我们知道PCA干的事情是把n维的样本投影到k维,同时丢失的信息能够达到最少。

为什么说principal component是covariance matrix的特征值中最大的前k个对应的特征向量上的分量?

解释:

对于一组样本数据,如果它们的方差越大,说明它们蕴含的信息越多,可以参考熵的概念理解。那么PCA需要做的事情就是当投影到k维的时候,每个维度上的方差都能够越大越好。这要怎么实现呢?

需要注意的是,在样本进行投影的时候,需要对数据进行feature scaling,即,j表示第j个feature,这样可以使的样本的均值为0.

左边是样本投影到u上的方差,因为原样本的均值为0,所以投影后的均值也为0,求方差那一项的括号里面就没有减去均值那一部分,该项用λ表示。最右边的括号内的部分为原样本的协方差,大小为n*n,用∑表示。(x^(i)是第i个样本,是n*1的向量)

注意到u是单位向量,因此u乘以u的Transpose等于1.因此对上式进一步推导得到uλ=λu=uu.T * ∑u = ∑u。

根据特征值和特征向量的定义,一个向量u与矩阵∑相乘,∑u,存在一个值λ,有λu=∑u,则λ是∑的特征值,u是∑的特征向量。

又因为根据λ是上式左边的部分,代表着投影到u上的方差,而我们又希望方差越大越好,因此选择λ里面值前k大对应的特征向量代表principal component的方向,是正确的。

因此,只需要对协方差矩阵进行特征值分解,得到的前k大特征值对应的特征向量,就是最佳的k维新特征,而且k维新特征是正交的。

Python的代码:

import numpy as np
np.cov(X)#covariance, X:ndarray-like
from scipy import eig
eig(np.cov(X))#return eigenvalue and eigenvectors

一个关于PCA的疑问的更多相关文章

  1. 关于《Windows程序设计(第五版)》中一个实例程序的疑问

    最近一直在看Charlse Petzold的<Windows程序设计>,作为一个新得不能再新的新手,只能先照着书的抄抄源码了,之前的例子一直都很正常,但昨天遇到一个很诡异的BUG. 先看实 ...

  2. 从一个LocalDateTime引发的疑问

    一 公司有同事部署出错,然后查日志,找时间,从k8s得到的时间是  2017-06-16T09:38:48.580 +0000,然后他就纳闷了,因为他根本不会在9点部署好吧,而且9点大多数程序员都没开 ...

  3. c++复习——一个小疑问

    C++中,子类为什么不能访问基类的private数据?     emmm  来自一个vegetable dog的疑问:   首先基类可以通过调用自身public成员函数来访问private 而子类又可 ...

  4. Linux就这个范儿 第12章 一个网络一个世界

    Linux就这个范儿 第12章 一个网络一个世界 与Linux有缘相识还得从一项开发任务说起.十八年前,我在Nucleus  OS上开发无线网桥AP,需要加入STP生成树协议(SpanningTree ...

  5. STL中map的一个知识点

    问题背景 在做USACO Section 1.1 Greedy Gift Givers的时候,我最初的想法是直接用一个map来进行数据处理.但是后来产生一个让我感到疑问的地方,后来我经过测试,发现了这 ...

  6. A tutorial on Principal Components Analysis | 主成分分析(PCA)教程

    A tutorial on Principal Components Analysis 原著:Lindsay I Smith, A tutorial on Principal Components A ...

  7. Java类的加载的一个小问题

    前言 之前写了一篇文章专门介绍了一下类的加载和对象的创建流程,然后收到了一个博友的疑问,觉得蛮好的,在这里和大家分享下. 博文地址:[Java基础]Java类的加载和对象创建流程的分析 疑问 类在加载 ...

  8. OpenCV学习(35) OpenCV中的PCA算法

    PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html     对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = ...

  9. 在Linux系统下搭建和配置一个minio文件服务器(二)

    上一篇主要讲述了在linux系统中搭建一个minio文件服务器,那么这一篇则用来整合java代码中使用,我之前自己已经搭建好了一个springboot项目,那么这一篇将详细讲述如何把minio整合进s ...

随机推荐

  1. Typora 配置说明

    目录 Typora 配置说明 贴图功能 自定义快捷键 快捷键使用 Linux下安装typora Typora 配置说明 为了更好的使用markdown,解决markdown中不如Word的不便之处,对 ...

  2. Pandas 数据分析基础

    Pandas 安装 anaconda 安装: conda list pandas 查看是否已经安装 conda install pandas conda update pandas pip 安装 pi ...

  3. RedLock 实现分布式锁

    J并发是程序开发中不可避免的问题,根据系统面向用户.功能场景的不同,并发的重视程度会有不同.从程序的角度来说,并发意味着相同的时间点执行了相同的代码,而有些情况是不被允许的,比如:转账.抢购占库存等, ...

  4. CSS之position体验

    目录: 1. position介绍 2. relative 3. position 4. fixed与static 5. 总结 1. position介绍 position最简单的理解就是元素位置的定 ...

  5. 搭建selenium + Python环境的总结:

    安装Python+Selenium 写博客是一个不错的选择,首先,是担心自己忘掉,其次,可以供大家做一个参考: 其实,这是自己第一次搭建Python环境(之前用了一周的Idle),还是比较容易的吧: ...

  6. Enumerable的判断是否包含某个元素

    // 通过使用默认的相等比较器(即纯粹的对象比较)确定序列是否包含指定的元素. public static bool Contains<TSource>(this IEnumerable& ...

  7. C#多线程3种创建Thread、Delegate.BeginInvoke、线程池

    1   创建多线程,一般情况有以下几种:(1)通过Thread类   (2)通过Delegate.BeginInvoke方法   (3)线程池 using System; using System.C ...

  8. S.O.L.I.D 是面向对象设计(OOD)和面向对象编程(OOP)中的几个重要编码原则

    注:以下图片均来自<如何向妻子解释OOD>译文链接:http://www.cnblogs.com/niyw/archive/2011/01/25/1940603.html      < ...

  9. Redis-CentOS7安装

    安装 Redis是c语言开发的. 安装redis需要c语言的编译环境.如果没有gcc需要在线安装.yum install gcc-c++ 安装步骤: 第一步:redis的源码包上传到linux系统. ...

  10. docker nginx 问题

    '经常不启动docker会遇到如下问题 启动docker pull * 会报错  1. 安装步骤: 解决办法:命令输入:docker logout 再次执行:docker pull * 2. 执行ru ...