http://uoj.ac/problem/204

肯定要离散化的,先离散化出\(O(n)\)个取值区间。

设\(f(i,j)\)表示第\(i\)所学校派出的划艇数量在\(j\)区间中。

\(f(i,j)=\sum\limits_{k=0}^{i-1}\left(\sum\limits_{t=1}^{j-1}f(k,t)\right)\times Cal(k+1,i,j)\)

\(Cal(l,r,j)\)表示\([l,r)\)中的每所学校要不然不派出划艇,要不然派出数量在\(j\)区间中的划艇,第\(r\)所学校一定要派出数量在\(j\)区间中的划艇,且满足划艇数递增的方案个数。

假设\([l,r)\)中只有\(m\)所学校能满足派出数量在\(j\)区间中的划艇,设\(j\)区间的大小为\(l\),那么\(Cal(l,r,j)=\sum\limits_{i=1}^{m+1}{l\choose i}\times{m\choose i-1}={l+m\choose m+1}\)。

利用这个组合数,再记录一下dp的前缀和,时间复杂度\(O(n^3)\)。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll; const int N = 503;
const int p = 1000000007; int l[N], a[N], b[N], H[N << 1], cnt = 0, n, f[N][N << 1], ni[N]; int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d%d", a + i, b + i);
H[++cnt] = a[i];
H[++cnt] = ++b[i];
} stable_sort(H + 1, H + cnt + 1);
cnt = unique(H + 1, H + cnt + 1) - H; for (int i = 1; i <= n; ++i) {
a[i] = lower_bound(H + 1, H + cnt, a[i]) - H;
b[i] = lower_bound(H + 1, H + cnt, b[i]) - H;
} cnt -= 2;
for (int i = 1; i <= cnt; ++i)
l[i] = H[i + 1] - H[i]; ni[1] = 1;
for (int i = 2; i <= n; ++i)
ni[i] = 1ll * (p - p / i) * ni[p % i] % p; for (int i = 0; i <= cnt; ++i) f[0][i] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = a[i], up = b[i]; j < up; ++j) {
int C = l[j], r = l[j], c = 1;
for (int k = i - 1; k >= 0; --k) {
(f[i][j] += 1ll * f[k][j - 1] * C % p) %= p;
if (a[k] <= j && j < b[k]) {
++r; ++c;
C = 1ll * C * r % p * ni[c] % p;
}
}
} for (int j = 2; j <= cnt; ++j)
(f[i][j] += f[i][j - 1]) %= p;
} int ans = 0;
for (int i = 1; i <= n; ++i) (ans += f[i][cnt]) %= p;
printf("%d\n", ans);
return 0;
}

【UOJ #204】【APIO 2016】Boat的更多相关文章

  1. 【UOJ #205】【APIO 2016】Fireworks

    http://uoj.ac/problem/205 好神的题啊. dp[i][j]表示以i为根的子树调整成长度j需要的最小代价. 首先要观察到dp值是一个下凸壳. 因为从儿子合并到父亲时要把所有儿子的 ...

  2. 【UOJ #206】【APIO 2016】Gap

    http://uoj.ac/problem/206 对于T=1,直接从两端往中间跳可以遍历所有的点. 对于T=2,先求出最小值a和最大值b,由鸽巢原理,答案一定不小于\(\frac{b-a}{N-1} ...

  3. UOJ 275. 【清华集训2016】组合数问题

    UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...

  4. UOJ #269. 【清华集训2016】如何优雅地求和

    UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...

  5. [UOJ#276]【清华集训2016】汽水

    [UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...

  6. UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]

    #274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...

  7. 【模拟】【数学】CSU 1803 2016 (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1803 题目大意: 给定n,m(n,m<=109)1<=i<=n,1& ...

  8. 【UOJ】67 新年的毒瘤 &【BZOJ】1123 BLO

    [UOJ 67] 题目链接: 传送门 题解: 第一眼很懵逼……这什么鬼. 思考什么点复合条件……(o(>﹏<)o 1.树,也就是说还剩n-2条边,等价于要删去一个度数为m-n+2的点. 2 ...

  9. 【UOJ#236】[IOI2016]railroad(欧拉回路,最小生成树)

    [UOJ#236][IOI2016]railroad(欧拉回路,最小生成树) 题面 UOJ 题解 把速度看成点,给定的路段看成边,那么现在就有了若干边,然后现在要补上若干边,以及一条\([inf,\) ...

随机推荐

  1. JavaScript 数组操作:slice vs splice

    在 JavaScript 中,对于数组的操作有两个很容易混淆的方法 splice, slice ,这里给大家推荐一篇介绍 splice, slice 二者区别的文章. In JavaScript, m ...

  2. 【洛谷 P2764】 最小路径覆盖问题(最大流)

    题目链接 首先有\(n\)条路径,每条路径就是一个点,然后尽量合并,答案就是点数-合并数. 套路拆点,源连入,出连汇,原有的边入出连. 最大流就是最大合并数,第一问解决. 然后怎么输出方案? 我是找到 ...

  3. 【leetcode 简单】 第五十一题 有效电话号码

    给定一个包含电话号码列表(一行一个电话号码)的文本文件 file.txt,写一个 bash 脚本输出所有有效的电话号码. 你可以假设一个有效的电话号码必须满足以下两种格式: (xxx) xxx-xxx ...

  4. python模块之imghdr检测图片类型

    1. imghdr是什么 imghdr是一个用来检测图片类型的模块,传递给它的可以是一个文件对象,也可以是一个字节流. 能够支持的图片格式: 2. 如何使用 提供了一个api叫做imghdr.what ...

  5. Python3中的SocketServer

    socket并不能多并发,只能支持一个用户,socketserver 简化了编写网络服务程序的任务,socketserver是socket的在封装.socketserver在python2中为Sock ...

  6. 组合数+逆元 A - Chat Group Gym - 101775A

    题目链接:https://cn.vjudge.net/contest/274151#problem/A 具体思路:我们可以先把所有的情况算出来,为2^n.然后不合法的情况减去就可以了.注意除法的时候要 ...

  7. SVMtrain的参数c和g的优化

    SVMtrain的参数c和g的优化 在svm训练过程中,需要对惩罚参数c和核函数的参数g进行优化,选取最好的参数 知道测试集标签的情况下 是让两个参数c和g在某一范围内取离散值,然后,取测试集分类准确 ...

  8. 转:mysql日志(Windows下开启Mysql慢查询、通用日志)

    一.Windows下开启Mysql慢查询详解 //show variables like '%quer%';查询是否开启了慢查询!! 第一步:修改my.ini(mysql配置文件)  在my.ini中 ...

  9. POJ 2752 Seek the Name, Seek the Fame(KMP求公共前后缀)

    题目链接:http://poj.org/problem?id=2752 题目大意:给你一串字符串s找到所有的公共前后缀,即既是前缀又是后缀的子串. 解题思路: 如图所示 假设字符串pi与jq为符合条件 ...

  10. 2018-2019-2 网络对抗技术 20165301 Exp6 信息搜集与漏洞扫描

    2018-2019-2 网络对抗技术 20165301 Exp6 信息搜集与漏洞扫描 1.实践目标 掌握信息搜集的最基础技能与常用工具的使用方法. 2.实践内容 (1)各种搜索技巧的应用 (2)DNS ...