一道纯粹的容斥原理题!!不过有一个trick,就是会出现重复的,害我WA了几次!!

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<set>
#include<vector>
#define ll long long
#define mod 55566677
using namespace std;
int p[],ans;
int m,n;
bool visd[],visc[],vis[][];
struct point
{
int a,b;
}q[];
void dfs(int s,int i,int f)
{
ans=(ans+f*p[n-s])%mod;
while(ans<) ans=(ans+mod)%mod;
for(int k=i+;k<m;k++){
if(!visd[q[k].a]&&!visc[q[k].b]){
visd[q[k].a]=;
visc[q[k].b]=;
dfs(s+,k,-f);
visd[q[k].a]=;
visc[q[k].b]=;
}
}
}
int main()
{
int i,a,b,j;
p[]=p[]=;
for(i=;i<=;i++) p[i]=((ll)p[i-]*i)%mod;
while(scanf("%d%d",&n,&m)!=EOF){
memset(vis,,sizeof(vis));
memset(visd,,sizeof(visd));
memset(visc,,sizeof(visc));
for(j=i=;i<m;i++){
scanf("%d%d",&a,&b);
if(!vis[a][b]){
vis[a][b]=;
q[j].a=a;
q[j++].b=b;
}
}
m=j;
ans=;
for(i=;i<m;i++){
visd[q[i].a]=;
visc[q[i].b]=;
dfs(,i,);
visd[q[i].a]=;
visc[q[i].b]=;
}
ans=(p[n]-ans)%mod;
while(ans<) ans=(ans+mod)%mod;
printf("%d\n",ans);
}
return ;
}

ZOJ 3687 The Review Plan I 容斥原理的更多相关文章

  1. ZOJ 3687 The Review Plan I

    The Review Plan I Time Limit: 5000ms Memory Limit: 65536KB This problem will be judged on ZJU. Origi ...

  2. (转)ZOJ 3687 The Review Plan I(禁为排列)

    The Review Plan I Time Limit: 5 Seconds      Memory Limit: 65536 KB Michael takes the Discrete Mathe ...

  3. The Review Plan I-禁位排列和容斥原理

    The Review Plan I Time Limit: 5000ms Case Time Limit: 5000ms Memory Limit: 65536KB   64-bit integer ...

  4. zoj.3868.GCD Expectation(数学推导>>容斥原理)

    GCD Expectation Time Limit: 4 Seconds                                     Memory Limit: 262144 KB    ...

  5. ACM学习历程—ZOJ 3868 GCD Expectation(莫比乌斯 || 容斥原理)

    Description Edward has a set of n integers {a1, a2,...,an}. He randomly picks a nonempty subset {x1, ...

  6. ZOJ 3687

    赤裸的带禁区的排列数,不过,难点在于如何用程序来写这个公式了.纠结了好久没想到,看了看别人的博客,用了DFS,实在妙极,比自己最初想用枚举的笨方法高明许多啊.\ http://blog.csdn.ne ...

  7. harukaの赛前日常

    REMEMBER US. haruka是可爱的孩子. 如题,此博客用来记录我停课后的日常. Dear Diary 10.8 上午考试. T1,直接枚举每一个点最后一次被修改的情况.(100pts) T ...

  8. [容斥原理] zoj 3556 How Many Sets I

    主题链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=4535 How Many Sets I Time Limit: 2 ...

  9. ZOJ 3233 Lucky Number --容斥原理

    这题被出题人给活活坑了,题目居然理解错了..哎,不想多说. 题意:给两组数,A组为幸运基数,B组为不幸运的基数,问在[low,high]区间内有多少个数:至少被A组中一个数整除,并且不被B中任意一个数 ...

随机推荐

  1. var_dump打印出来格式太乱 怎么调

    var_dump()和print_r() 输出的都是文本格式,在浏览器中就是这样如果你加载了 xdebug 扩展,那么 var_dump() 就会以 html 格式输出

  2. (5)剑指Offer之栈变队列和栈的压入、弹出序列

    一 用两个栈实现队列 题目描述: 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 问题分析: 先来回顾一下栈和队列的基本特点: 栈:后进先出(LIFO) 队列: ...

  3. 16 - 文件操作-StringIO-BytesIO

    目录 1 文件操作 1.1 open函数介绍 1.2 打开操作 1.2.1 mode模式 1.2.2 文件指针 1.2.3 缓冲区 1.2.4 encoding编码 1.2.5 其他参数 1.3 读写 ...

  4. 问题解决:The content of the adapter has changed but ListView did not receive a notification

    1. 不要在后台线程中直接调用adapter 2. 不要在后台线程中修改adapter绑定的数据 如果对adapter或者adapter绑定的数据是在线程中,加上runOnUiThread就可以了 r ...

  5. 《深入理解Java虚拟机》笔记--第四章、虚拟机性能监控与故障处理工具

    主要学习并记录在命令行中操作服务器时使用的六大命令工具,可视化工具JConsole和VisualVM在开发过程中熟悉. 一.jps:虚拟机进程状况工具(JVM Process Status Tool) ...

  6. npm install 装本地一直安装全局问题

    想用npm安装一些模块,不管怎么装,一直装作全局. 以为是node有问题,重装了N次,却还发现这个问题. 困惑几天无果, 偶然间通过此文章发现,npm存在配置文件:https://www.sitepo ...

  7. Python 读写xlsx

    # pip install openpyxl # openpyxl只能用于处理xlsx,不能用于处理xlsfrom openpyxl import load_workbook # 打开文件ExcelF ...

  8. Eolinker——高级代码模式(JS语法)

    ### 定义遍历与赋值JavaScript 使用关键字 var 来定义变量, 使用等号来为变量赋值:```var a=1;<!--or-->var a;a=1 ``` ### 输出输出函数 ...

  9. Python中列表的各种方法

    列表是Python中一种常用的存储信息的方式,所以要熟练掌握列表的各种方法: 首先我们定义一个列表(name),然后练习里面的各种方法: >>> name = ["Sora ...

  10. loadrunner字符串转换函数