205. Quantization Problem

time limit per test: 0.25 sec.
memory limit per test: 65536 KB
input: standard
output: standard

When entering some analog data into a computer, this information must be quantized. Quantization transforms each measured value x to some other value l(x) selected from the predefined set L of levels. Sometimes to reduce the influence of the levels set to the information, the group of levels sets Li is used. The number of levels sets is usually chosen to be the power of 2.

When using the number of levels sets, some additional information should be used to specify which set was used for each quantization. However, providing this information may be too expensive — the better solution would be to choose more levels and use one set. To avoid the specification of the quantization set, the following technique is used. Suppose that n values \(x_1, x_2, ..., x_n\) are to be quantized and the group of \(m=2^p\) levels sets \(Li, i=0, ..., m-1\); each of size \(s=2^q\) is used to quantize it. After quantization \(x_j\) is replaced with some number \(l_j = in L_{f(j)}\). Instead of sending \(l_j\), its ordinal number in \(L_{f(j)}\) is usually sent, let \(k_j\) be the ordinal number of \(l_j\) in \(L_{f(j)}\) (levels are numbered starting with 0). Take p least significant bits of \(k_j\) and say that the number \(k_j\ \&\ (2^p-1)\) is the number of the levels set that will be used for next quantization, that is \(f(j+1) = k_j\ \&\ (2^p-1)\).

Since the least significant bits of kj are usually distributed quite randomly, the sets used for quantization change often and weakly depend on values of quantized data, thus this technique provides the good way to perform the quantization.

Usually to perform the quantization the closest to the value level of the levels set is chosen. However, using the technique described, sometimes it pays off to choose not the optimal level, but some other one, the ordinal number of which has other least significant bits, thus choosing another levels set for next measure and providing better approximation of quantized values in the future. Let us call the deviation of quantization the value of \(\sum_{j=1}^{n}|xj - lj|\). Your task is given measures and levels sets to choose quantized value for each measure in such a way, that the deviation of quantization is minimal possible.

The first value is always quantized using set L0.

Input

The first line of the input file contains n (1 ≤ n ≤ 1000). The second line contains n integer numbers xi ranging from 1 to 106. The next line contains m and s \((1 ≤ m ≤ 128, m ≤ s ≤ 128)\). Next m lines contain s integer numbers each — levels of the quantization sets given in increasing order for each set, all levels satisfy \(1 ≤ level ≤ 10^6\).

Output

First output the minimal possible deviation of the quantization. Then output n integer numbers in range from 0 to s - 1. For each input value output the number of the level in the corresponding levels set \((k_j)\) used for this number to achieve the quantization required.

Sample test(s)

Input

3
8 8 19
2 4
5 10 15 20
3 7 13 17

Output

5
1 1 3

题意

给出一列长n的数列\(\{S_i\}\)和一个\(m\times s\)的矩阵\(A\)(\(m\le s\)且\(m,s\)都是2的整数次方)。求一列数\(\{K_i\}\),使\(K_0=0\),且 \(\sum_{i=1}^{n}{|A_{K_{i-1} \mod m, K_i}-S_i|}\)最小。

引用与修改自Amber——SGU 提示


看懂题了就是sb题了。

由于在阶段i时对答案产生影响的只有\(K_i\)和\(K_{i-1}\)的取值,显然可以DP做。不妨用f[i][j]表示考虑到第i个数字\(K_i\)取j时的最小值,转移是显然的:f[i][j]=min(f[i-1][k]+A[k%m][j]-S[i]),注意记录路径,然后没了。。就是题意难懂啊。

#include <bits/stdc++.h>
#define rep(_i, _j) for(int _i = 0; _i < _j; ++_i)
const int inf = 0x3f3f3f3f;
typedef long long LL;
typedef double DB;
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1000 + 10;
const int maxm = 128 + 2; int n, m, s, A[maxm][maxm], f[maxn][maxm], pre[maxn][maxm], S[maxn]; int main() {
#ifndef ONLINE_JUDGE
freopen("205.in", "r", stdin); freopen("205.out", "w", stdout);
#endif scanf("%d", &n);
for(int i = 1; i <= n; scanf("%d", &S[i]), ++i); // 大家不要学我这样写。。。
scanf("%d%d", &m, &s);
rep(i, m) rep(j, s) scanf("%d", &A[i][j]);
memset(f, INF, sizeof f);
f[0][0] = 0;
for(int i = 1; i <= n; ++i) {
for(int j = 0; j < s; ++j) {
if(i == 1) {
f[i][j] = min(f[i][j], f[i - 1][0] + abs(A[0][j] - S[i]));
pre[i][j] = 0;
continue;
}
for(int k = 0; k < s; ++k) {
int tmp = f[i - 1][k] + abs(A[k % m][j] - S[i]);
if(tmp < f[i][j]) {
pre[i][j] = k;
f[i][j] = tmp;
}
}
}
}
int ans = INF, rec;
for(int i = 0; i < s; ++i) {
if(f[n][i] < ans) {
ans = f[n][i];
rec = i;
}
}
printf("%d\n", ans);
vector<int> res;
int i = n;
while(i != 0) {
res.push_back(rec);
rec = pre[i--][rec];
}
printf("%d", res[res.size() - 1]);
for(int i = res.size() - 2; 0 <= i; --i) {
printf(" %d", res[i]);
}
puts(""); return 0;
}

SGU 205. Quantization Problem的更多相关文章

  1. 找规律 SGU 107 987654321 problem

    题目地址:http://acm.sgu.ru/problem.php?contest=0&problem=107 /* 题意:n位数的平方的后面几位为987654321的个数 尼玛,我看描述这 ...

  2. acdream 1222 Quantization Problem [dp]

    称号:acdream 1222 Quantization Problem 题意:给出一个序列 a ,然后给出一个 n * m 的矩阵,让你从这个矩阵中选出一个序列k,使得sum(abs(ki - ai ...

  3. SGU 107 987654321 problem【找规律】

    题目链接: http://acm.sgu.ru/problem.php?contest=0&problem=107 题意: 平方后几位为987654321的n位数有多少个 分析: 虽然说是水题 ...

  4. SGU 403 Scientific Problem

    403. Scientific Problem Time limit per test: 0.25 second(s)Memory limit: 65536 kilobytes input: stan ...

  5. 数论 - SGU 107 987654321 problem

    987654321 problem Problem's Link Mean: 略 analyse: 这道题目是道简单题. 不过的确要好好想一下: 通过简单的搜索可以知道,在N<9时答案一定为0, ...

  6. SGU - 403 - Scientific Problem (水)

    403. Scientific Problem Time limit per test: 0.25 second(s) Memory limit: 65536 kilobytes input: sta ...

  7. sgu 107 987654321 problem

    其实挺水的,因为两个数平方,只有固定的后面几位数会影响到最后结果的后面几位数.也就是说,如果想在平方之后尾数为987654321,那么就有固定的几个尾数在平方后会是这个数,打个表,发现 10^8 内 ...

  8. 数论 - SGU 105 DIV3

    SGU 105-DIV 3 Problem's Link Mean: 定义这样一种数列:1,12,123.. 给出一个n,求这个数列中能被3整除的数的个数. analyse: 这道题可以用分析的方法解 ...

  9. SGU 乱搞日志

    SGU 100 A+B :太神不会 SGU 101 Domino: 题目大意:有N张骨牌,两张骨牌有两面有0到6的数字,能相连当且仅当前后数字相同,问能否有将N张骨牌连接的方案?思路:裸的欧拉回路,注 ...

随机推荐

  1. 简单shell 编程

    简单shell编程  by  dreamboy #!/bin/bash while true do echo clear echo echo " 系统维护菜单 " echo &qu ...

  2. 最常用的8款 PHP 调试工具,你用过吗?

    Web 开发并不是一项轻松的任务,有超级多服务端脚本语言提供给开发者,但是当前 PHP 因为具有额外的一些强大的功能而越来越流行.PHP 是最强大的服务端脚本语言之一,同时也是 Web 开发者和设计者 ...

  3. 说说asp.net中的异常处理和日志追踪

    关于异常的处理想必大家都了解try{}catch(){}finally{},这里就不再讲了.通过在VS里的"调试"-"异常",在弹出的异常对话框里的Common ...

  4. 说一说ASP.NET web.config 加密及解密方法 (代码)

    /// <summary> /// 保护web.config的加密和解密 /// </summary> public class ProtectHelper { /// < ...

  5. js父页面和子页面相互取值

    iframe子页面与父页面通信根据iframe中src属性是同域链接还是跨域链接,通信方式也不同. 一.同域下父子页面的通信 父页面parent.html <html> <head& ...

  6. PHP做文件限速下载

    <?php include("DBDA.class.php"); $db = new DBDA(); $bs = $_SERVER["QUERY_STRING&qu ...

  7. 使sqoop能够启用压缩的一些配置

    在使用sqoop 将数据库表中数据导入至hdfs时 配置启用压缩 hadoop 的命令    检查本地库支持哪些  bin/hadoop checknative 需要配置native    要编译版本 ...

  8. 如何写出优雅的js以及js特殊技巧

    由于代码和解释都写在了github的readme内部,这里就直接附上github:https://github.com/jiangzhenfei/pretty-js/tree/master

  9. JSON.stringify()——JS转JSON字符串

    JSON.stringify() JSON 通常用于与服务端交换数据. 在向服务器发送数据时一般是字符串. 我们可以使用 JSON.stringify() 方法将 JavaScript 对象转换为字符 ...

  10. (2)剑指Offer之二维数组查找和替换空格问题

    一 二维数组查找 题目描述: 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 问 ...