1. 电流密度, 电荷守恒定律

(1) 电荷的定向移动形成电流.

(2) 电流密度 ${\bf j}$, 是描述导体内一点在某一时刻电流流动情况的物理量, 用单位时间内通过垂直于电流方向的单位面积的电荷量来衡量.

(3) 电荷守恒定律: 设 $\vGa$ 为一封闭曲面, 则单位时间内 $\vGa$ 内电荷的增加量 $=$ 这段时间内经 $\vGa$ 流入的电荷总和, 用公式表示为 $$\bex \cfrac{\rd}{\rd t}\int_\Omega \rho\rd V =-\int_\vGa {\bf j}\cdot{\bf n}\rd S. \eex$$ 而可化为微分形式 $$\bex \rho_t+\Div {\bf j}=0. \eex$$ 称为电流的连续性方程.

2. Amp\'ere-Biot-Savart 定律, 磁感强度

(1) 磁场是一种空间, 于其中运动的电荷 (电流) 受到力的作用.

(2) 磁场是物质存在的一种形式, 它可以离开电流而独立存在, 比如变化的电场产生磁场.

(3) 在稳定的电流分布 ${\bf j}(x,y,z)$ 中, $P$ 处的电流元 ${\bf j}(P)\rd V_P$ 受到 $P'$ 处的电流元 ${\bf j}(P')\rd V_{P'}$ 的作用力为 $$\bex \cfrac{\mu_0}{4\pi} {\bf j}(P)\rd V_P\times \sex{\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3}}, \eex$$ 其中 $\mu_0=4\pi\times 10^{-7}V\cdot s/(A\cdot m)$ 为真空中的磁导率.

(4) 设电流分布的空间为 $\Omega$, 则 ${\bf j}(P)\rd V_P$ 所受的力为 $$\bex \rd {\bf F}(P)={\bf j}(P)\rd V_P\times \int_\Omega\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3}. \eex$$ 令 $$\bex {\bf B}(P)=\int_\Omega\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3} \eex$$ 为 $P$ 处的磁感强度, 则 $$\bex \rd {\bf F}(P)={\bf j}(P)\rd V_P\times {\bf B}(P). \eex$$ 这就是 Amp\'ere-Biot-Savart 定律.

3. Amp\'ere 定理的积分形式: 对静磁场中的任一闭曲线 $l$, $$\bex \oint_l{\bf B}\cdot \rd{\bf l} =\mu_0\int_S {\bf j}\cdot {\bf n}\rd S, \eex$$ 其中 $S$ 为任一以 $l$ 为边界的有向曲面, 其方向与 $l$ 成右手定则.

证明:

(1) 先对 ${\bf B}$ 化简: $$\beex \bea {\bf B}(P)&=\cfrac{\mu_0}{4\pi} \int_\Omega\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3}\\ &=\cfrac{\mu_0}{4\pi}\int_\Omega \n\cfrac{1}{r_{P'P}} \times {\bf j}(P')\rd V_{P'}\\ &=\cfrac{\mu_0}{4\pi}\int_\Omega \sez{ \rot\sex{\cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}} -\cfrac{1}{r_{P'P}}\rot {\bf j}(P') \rd V_{P'}}\\ &\quad\sex{\rot(\phi{\bf A})=\n\phi\times {\bf A}+\phi\rot {\bf A}}\\ &=\rot {\bf A}(P)\quad\sex{{\bf A}(P)=\cfrac{\mu_0}{4\pi} \int_\Omega \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}}, \eea \eeex$$ 其中最后一步我们利用了稳定磁场是 (有源) 无旋场.

(2) 如此, $$\bex \Div {\bf B}(P)\ra \int_S {\bf B}\cdot\n \rd S=0\quad\sex{\forall\ \mbox{封闭曲面 }S}. \eex$$ 静磁场是无源场.

(3) $$\beex \bea \int_l{\bf B}\cdot\rd {\bf l} &=\int_S \rot{\bf B}\cdot{\bf n}\rd S\\ &=\int_S\rot\rot {\bf A}\cdot{\bf n}\rd S\\ &=\int_S (-\lap {\bf A}+\n\Div{\bf A})\rd S\\ &\equiv I_1+I_2. \eea \eeex$$

(4) 对 $I_1$, 注意到 $-\cfrac{1}{4\pi}\int_\Omega \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}$ 为 $-\lap{\bf u}={\bf j}$ 的解, 而 $$\bex I_1=\int_S \mu_0{\bf j}\cdot{\bf n}\rd S. \eex$$

(5) 对 $I_2$, 注意到 $$\beex \bea \Div {\bf A}(P)&=\cfrac{\mu_0}{4\pi}\int_\Omega \Div \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}\\ &=\cfrac{\mu_0}{4\pi} \int_\Omega \n\cfrac{1}{r_{P'P}}\cdot{\bf j}(P')\rd V_{P'}\\ &\quad\sex{\Div(f{\bf X})=\n f \cdot {\bf X}+f\Div {\bf X},\ \Div{\bf j}=0\la (2. 21)}\\ &=-\cfrac{\mu_0}{4\pi}\int_\Omega \n'\cfrac{1}{r_{P'P}}\cdot {\bf j}(P')\rd V_{P'}\\ &=-\cfrac{\mu_0}{4\pi}\sez{ \int_{\p \Omega}\cfrac{1}{r_{P'P}}{\bf j}(P')\cdot{\bf n}\rd S -\int_\Omega \cfrac{1}{r_{P'P}}\Div'{\bf j}(P')\rd V_{P'} }\\ &=0, \eea \eeex$$ 我们有 $I_2=0$.

(6) 于是 $$\bex \oint_l{\bf B}\cdot{\bf n}\rd {\bf l} =\mu_0\int_S{\bf j}\cdot{\bf n}\rd S. \eex$$

4. Amp\'ere 定理的微分形式: $$\bex \rot{\bf B}=\mu_0{\bf j}. \eex$$ 由此, 静磁场是有旋场.

5. 总结: 稳定电流的磁场 (静磁场) 是无源有旋场.

[物理学与PDEs]第1章第2节 预备知识 2.2 Ampere-Biot-Savart 定律, 静磁场的散度与旋度的更多相关文章

  1. [物理学与PDEs]第1章第2节 预备知识 2.3 Faraday 电磁感应定律

    1.  Faraday 电磁感应定律: 设 $l$ 为任一闭曲线, 则 $$\bex \oint_l{\bf E}\cdot\rd {\bf l} =-\int_S \cfrac{\p {\bf B} ...

  2. [物理学与PDEs]第1章第2节 预备知识 2.1 Coulomb 定律, 静电场的散度与旋度

    1. Coulomb 定律, 电场强度 (1) 真空中 $P_1$ 处有电荷 $q_1$, $P$ 处有电荷 $q$, ${\bf r}_1=\vec{P_1P}$, 则 $q$ 所受的力为 $$\b ...

  3. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  4. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  5. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  6. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  7. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  8. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

随机推荐

  1. duilib

    https://www.cnblogs.com/lin1270/p/4109305.html

  2. 通过BulkLoad快速将海量数据导入到Hbase

    在第一次建立Hbase表的时候,我们可能需要往里面一次性导入大量的初始化数据.我们很自然地想到将数据一条条插入到Hbase中,或者通过MR方式等. 但是这些方式不是慢就是在导入的过程的占用Region ...

  3. day10-内置模块学习(一)

    今日份目录 1.模块之间的相互调用 2.代码结构的标准化 3.os模块 4.sys模块 5.collection模块 开始今日份总结 开始今日份总结 1.模块之间的相互调用 由于一些原因,总是会调用别 ...

  4. (三)Installation

    Elasticsearch requires at least Java 8. Specifically as of this writing, it is recommended that you ...

  5. python 中内存释放与函数传递numpy数组问题

    numpy.array 作为参数传入函数中时,是作为引用进去的,函数内部对这个数组的修改会直接修改原始数据.在函数中需要暂时修改数据,不对原始数据造成影响的话,需要用 np.copy() 先拷贝一份, ...

  6. python小白——进阶之路——day3天-———运算符

    (1)算数运算符:  + - * / // % ** (2)比较运算符:  > < >= <= == != (3)赋值运算符:  = += -= *= /= //= %= ** ...

  7. STM32407+LAN8720A+LWIP 实现TCP Client

    硬件 一.配置CubeMax工程 二.配置系统时钟 因为LAN8720使用的是外部25MHz的晶振,所以不需要单片机输出时钟 三.配置ETH和LWIP参数 四.更改代码 LAN8720A在初始化的时候 ...

  8. redis--小白博客

    概述 redis是一种nosql数据库,他的数据是保存在内存中,同时redis可以定时把内存数据同步到磁盘,即可以将数据持久化,并且他比memcached支持更多的数据结构(string,list列表 ...

  9. python中的编码问题

    遇到的问题: (1)ValueError: source code string cannot contain null bytes 发现文件的编码被改成了UTF-16BE,使用pycharm设置项目 ...

  10. tensorflow函数/重要功能实现

    一.基础函数 1.1 .tf.reduce_sum(input_tensor, axis)   Computes the sum of elements across dimensions of a ...