pyecharts是一款将python与echarts结合的强大的数据可视化工具,本文将为你阐述pyecharts的使用细则

前言

我们都知道python上的一款可视化工具matplotlib,而前些阵子做一个Spark项目的时候用到了百度开源的一个可视化JS工具-Echarts,可视化类型非常多,但是得通过导入js库在Java Web项目上运行,平时用Python比较多,于是就在想有没有Python与Echarts结合的轮子。Google后,找到一个国人开发的一个Echarts与Python结合的轮子:pyecharts,下面就来简述下pyecharts一些使用细则:

安装

写这篇文章用的是Win环境,首先打开命令行(win+R),输入:

pip install pyecharts

但笔者实测时发现,由于墙的原因,下载时会出现断线和速度过慢的问题导致下载失败,所以建议通过清华镜像来进行下载:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts

想要学习Python?Python学习交流群:973783996满足你的需求,资料都已经上传群文件,可以自行下载!

 

出现上方的信息,即代表下载成功,我们可以来进行下一步的实验了!

使用实例

使用之前我们要强调一点:就是python2.x和python3.x的编码问题,在python3.x中你可以把它看做默认是unicode编码,但在python2.x中并不是默认的,原因就在它的bytes对象定义的混乱,而pycharts是使用unicode编码来处理字符串和文件的,所以当你使用的是python2.x时,请务必在上方插入此代码:

from __future__ import unicode_literals

现在我们来开始正式使用pycharts,这里我们直接使用官方的数据:

柱状图-Bar

//导入柱状图-Bar

from pyecharts import Bar

//设置行名

columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

//设置数据

data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]

data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]

//设置柱状图的主标题与副标题

bar = Bar("柱状图", "一年的降水量与蒸发量")

//添加柱状图的数据及配置项

bar.add("降水量", columns, data1, mark_line=["average"], mark_point=["max", "min"])

bar.add("蒸发量", columns, data2, mark_line=["average"], mark_point=["max", "min"])

//生成本地文件(默认为.html文件)

bar.render()

运行结果如下:

 

简单的几行代码就可以将数据进行非常好看的可视化,而且还是动态的,在这里还是要安利一下jupyter,pyecharts在v0.1.9.2版本开始,在jupyter上直接调用实例(例如上方直接调用bar)就可以将图表直接表示出来,非常方便。

笔者数了数,目前pyecharts上的图表大概支持到二十多种,接下来,我们再用上方的数据来生成几个数据挖掘常用的图表示例:

饼图-Pie

//导入饼图Pie

from pyecharts import Pie

//设置主标题与副标题,标题设置居中,设置宽度为900

pie = Pie("饼状图", "一年的降水量与蒸发量",title_pos='center',width=900)

//加入数据,设置坐标位置为【25,50】,上方的colums选项取消显示

pie.add("降水量", columns, data1 ,center=[25,50],is_legend_show=False)

//加入数据,设置坐标位置为【75,50】,上方的colums选项取消显示,显示label标签

pie.add("蒸发量", columns, data2 ,center=[75,50],is_legend_show=False,is_label_show=True)

//保存图表

pie.render()

 

箱体图-Boxplot

//导入箱型图Boxplot

from pyecharts import Boxplot

boxplot = Boxplot("箱形图", "一年的降水量与蒸发量")

x_axis = ['降水量','蒸发量']

y_axis = [data1,data2]

//prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]

yaxis = boxplot.prepare_data(y_axis)

boxplot.add("天气统计", x_axis, _yaxis)

boxplot.render()

 

折线图-Line

from pyecharts import Line

line = Line("折线图","一年的降水量与蒸发量")

//is_label_show是设置上方数据是否显示

line.add("降水量", columns, data1, is_label_show=True)

line.add("蒸发量", columns, data2, is_label_show=True)

line.render()

 

雷达图-Rader

from pyecharts import Radar

radar = Radar("雷达图", "一年的降水量与蒸发量")

//由于雷达图传入的数据得为多维数据,所以这里需要做一下处理

radar_data1 = [[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]]

radar_data2 = [[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]]

//设置column的最大值,为了雷达图更为直观,这里的月份最大值设置有所不同

schema = [

("Jan", 5), ("Feb",10), ("Mar", 10),

("Apr", 50), ("May", 50), ("Jun", 200),

("Jul", 200), ("Aug", 200), ("Sep", 50),

("Oct", 50), ("Nov", 10), ("Dec", 5)

]

//传入坐标

radar.config(schema)

radar.add("降水量",radar_data1)

//一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色

radar.add("蒸发量",radar_data2,item_color="#1C86EE")

radar.render()

 

散点图-scatter

from pyecharts import Scatter

scatter = Scatter("散点图", "一年的降水量与蒸发量")

//xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置

scatter.add("降水量与蒸发量的散点分布", data1,data2,xaxis_name="降水量",yaxis_name="蒸发量",

yaxis_name_gap=40)

scatter.render()

 

图表布局 Grid

由于标题与图表是属于两个不同的控件,所以这里必须对下方的图表Line进行标题位置设置,否则会出现标题重叠的bug。

from pyecharts import Grid

//设置折线图标题位置

line = Line("折线图","一年的降水量与蒸发量",title_top="45%")

line.add("降水量", columns, data1, is_label_show=True)

line.add("蒸发量", columns, data2, is_label_show=True)

grid = Grid()

//设置两个图表的相对位置

grid.add(bar, grid_bottom="60%")

grid.add(line, grid_top="60%")

grid.render()

 

from pyecharts import Overlap

overlap = Overlap()

bar = Bar("柱状图-折线图合并", "一年的降水量与蒸发量")

bar.add("降水量", columns, data1, mark_point=["max", "min"])

bar.add("蒸发量", columns, data2, mark_point=["max", "min"])

overlap.add(bar)

overlap.add(line)

overlap.render()

 

总结

导入相关图表包

进行图表的基础设置,创建图表对象

利用add()方法进行数据输入与图表设置(可以使用print_echarts_options()来输出所有可配置项)

利用render()方法来进行图表保存

Python中的可视化神器:pyecharts的更多相关文章

  1. Python中的可视化神器!你知道是啥吗?没错就是pyecharts!

    pyecharts是一款将python与echarts结合的强大的数据可视化工具,本文将为你阐述pyecharts的使用细则 前言 我们都知道python上的一款可视化工具matplotlib,而前些 ...

  2. 如何使用Python快速制作可视化报表----pyecharts

    如何使用Python快速制作可视化报表   数据可视化能力已经越来越成为各岗位的基础技能.领英的数据报告显示,数据可视化技能在2017年中国最热门技能中排名第一. 就数据分析而言,可视化探索几乎是你正 ...

  3. python中的那些“神器”

    "武林至尊,宝刀屠龙,号令天下,莫敢不从,倚天不出,谁与争锋",这是神器.不过今天要说的python中的"神器"就没有这么厉害了,这里要说的"神器&q ...

  4. Python中两大神器&exec() &eval()

    一.神器1 -- 内置函数eval eval是python中的内置函数,它的作用是将字符串变为所对应的表达式,也相当于一个功能代码加双引号变为字符串,而eval又将字符串转为相应的功能,它在使用过程中 ...

  5. python Matplotlib数据可视化神器安装与基本应用

    Matplotlib Matplotlib 是一个非常强大的 Python 画图工具; 手中有很多数据, Matplotlib能帮你画出美丽的: 线图; 散点图; 等高线图; 条形图; 柱状图; 3D ...

  6. python中的画图神器——turtle模块

    turtle库的基础命令介绍(1)画布画布cancas是绘图区域,可以设置它的大小和初始位置 turtle.screensize(1000,600,'red') 大小的设置 turtle.setup( ...

  7. Python:数据可视化pyecharts的使用

    什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生 ...

  8. 【python可视化系列】python数据可视化利器--pyecharts

    学可视化就跟学弹吉他一样,刚开始你会觉得自己弹出来的是噪音,也就有了在使用python可视化的时候,总说,我擦,为啥别人画的图那么溜: [python可视化系列]python数据可视化利器--pyec ...

  9. python数据可视化:pyecharts

    发现了一个做数据可视化非常好的库:pyecharts.非常便捷好用,大力推荐!! 官方介绍:pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 ...

随机推荐

  1. Java Scanner nextLine方法跳过

    问题描述 Scanner使用了nextInt方法的时候,如果接下来要使用nextLine,会获取不到内容 原因 因为Scanner读取用户输入数据,是先判断缓冲区是否含有数据,没有则接收用户输入的数据 ...

  2. HTTPS 站点的性能优化

    HTTPS 站中的几大难题 性能,包括: HTTPS需要多次握手,因此网络耗时变长,用户从HTTP跳转到HTTPS需要一些时间: HTTPS要做RSA校验,这会影响到设备性能: 所有CDN节点要支持H ...

  3. MySQL如何修改密码

    以下几种方法可供选择 第一种方式: 最简单的方法就是借助第三方工具Navicat for MySQL来修改,方法如下: 1.登录mysql到指定库,如:登录到test库. 2.然后点击上方“用户”按钮 ...

  4. 从.Net到Java学习第一篇——开篇

    以前我常说,公司用什么技术我就学什么.可是对于java,我曾经一度以为“学java是不可能的,这辈子不可能学java的.”结果,一遇到公司转java,我就不得不跑路了,于是乎,回头一看N家公司交过社保 ...

  5. 如何开启红米手机4X的ROOT超级权限

    红米手机4X通过什么方法拥有了root权限?大家都清楚,Android机器有root权限,如果手机拥有了root相关权限,可以实现更强的功能,举个栗子大家公司的营销部门同事,使用大多数营销软件都需要在 ...

  6. Xutils, OKhttp, Volley, Retrofit对比

    Xutils这个框架非常全面,可以进行网络请求,可以进行图片加载处理,可以数据储存,还可以对view进行注解,使用这个框架非常方便,但是缺点也是非常明显的,使用这个项目,会导致项目对这个框架依赖非常的 ...

  7. (办公)SpringBoot与mybatisGenerator自动生成.

    20181206-自动生成,少写一点代码. (以下的内容主要参考csdn上的<[完美]SpringBoot+Mybatis-Generator自动生成>这篇文章,还有简书上的mbatis- ...

  8. SQLServer数据库维护(一)碎片检查整理

    一.碎片查看维护 dbcc showcontig('表名') dbcc showcontig ('T_NOFITSTUDY') 结果如下: DBCC SHOWCONTIG 正在扫描 'T_NOFITS ...

  9. MySQL 基础知识梳理学习(五)----详解MySQL两次写的设计及实现

    一 . 两次写提出的背景或要解决的问题 两次写(InnoDB Double Write)是Innodb中很独特的一个功能点.因为Innodb中的日志是逻辑的,所谓逻辑就是比如插入一条记录时,它可能会在 ...

  10. UPUPW配置

    UPUPW下载地址 https://sourceforge.net/projects/upupw/files/ANK/?tdsourcetag=s_pctim_aiomsg 配置 在这里插入图片描述