并发编程(十一)—— Java 线程池 实现原理与源码深度解析(一)
史上最清晰的线程池源码分析
鼎鼎大名的线程池。不需要多说!!!!!
这篇博客深入分析 Java 中线程池的实现。
总览
下图是 java 线程池几个相关类的继承结构:
先简单说说这个继承结构,Executor 位于最顶层,也是最简单的,就一个 execute(Runnable runnable) 接口方法定义。
ExecutorService 也是接口,在 Executor 接口的基础上添加了很多的接口方法,所以一般来说我们会使用这个接口。
然后再下来一层是 AbstractExecutorService,从名字我们就知道,这是抽象类,这里实现了非常有用的一些方法供子类直接使用,之后我们再细说。
然后才到我们的重点部分 ThreadPoolExecutor 类,这个类提供了关于线程池所需的非常丰富的功能。
线程池中的 BlockingQueue 也是非常重要的概念,如果线程数达到 corePoolSize,我们的每个任务会提交到等待队列中,等待线程池中的线程来取任务并执行。这里的 BlockingQueue 通常我们使用其实现类 LinkedBlockingQueue、ArrayBlockingQueue 和 SynchronousQueue,每个实现类都有不同的特征,使用场景之后会慢慢分析。想要详细了解各个 BlockingQueue 的读者,可以参考我的前面的一篇对 BlockingQueue 的各个实现类进行详细分析的文章。
使用示例
package main.java.Juc; import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; class MyRunnable implements Runnable {
@Override
public void run() {
for (int x = 0; x < 100; x++) {
System.out.println(Thread.currentThread().getName() + ":" + x);
}
}
} public class TestThreadPool {
public static void main(String[] args) {
// 创建一个线程池对象,控制要创建几个线程对象。
ExecutorService pool = Executors.newFixedThreadPool(2); // 可以执行Runnable对象或者Callable对象代表的线程
pool.execute(new MyRunnable());
pool.execute(new MyRunnable()); //结束线程池
pool.shutdown();
}
}
运行结果:
Executor 接口
public interface Executor {
void execute(Runnable command);
}
我们可以看到 Executor 接口非常简单,就一个 void execute(Runnable command)
方法,代表提交一个任务。
当然了,Executor 这个接口只有提交任务的功能,太简单了,我们想要更丰富的功能,比如我们想知道执行结果、我们想知道当前线程池有多少个线程活着、已经完成了多少任务等等,这些都是这个接口的不足的地方。接下来我们要介绍的是继承自 Executor
接口的 ExecutorService
接口,这个接口提供了比较丰富的功能,也是我们最常使用到的接口。
ExecutorService
那么我们简单初略地来看一下这个接口中都有哪些方法:
public interface ExecutorService extends Executor { // 关闭线程池,已提交的任务继续执行,不接受继续提交新任务
void shutdown(); // 关闭线程池,尝试停止正在执行的所有任务,不接受继续提交新任务
// 它和前面的方法相比,加了一个单词“now”,区别在于它会去停止当前正在进行的任务
List<Runnable> shutdownNow(); // 线程池是否已关闭
boolean isShutdown(); // 如果调用了 shutdown() 或 shutdownNow() 方法后,所有任务结束了,那么返回true
// 这个方法必须在调用shutdown或shutdownNow方法之后调用才会返回true
boolean isTerminated(); // 等待所有任务完成,并设置超时时间
// 我们这么理解,实际应用中是,先调用 shutdown 或 shutdownNow,
// 然后再调这个方法等待所有的线程真正地完成,返回值意味着有没有超时
boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException; // 提交一个 Callable 任务
<T> Future<T> submit(Callable<T> task); // 提交一个 Runnable 任务,第二个参数将会放到 Future 中,作为返回值,
// 因为 Runnable 的 run 方法本身并不返回任何东西
<T> Future<T> submit(Runnable task, T result); // 提交一个 Runnable 任务
Future<?> submit(Runnable task); ......
}
这些方法都很好理解,一个简单的线程池主要就是这些功能,能提交任务,能获取结果,能关闭线程池,这也是为什么我们经常用这个接口的原因。
AbstractExecutorService
AbstractExecutorService 抽象类派生自 ExecutorService 接口,然后在其基础上实现了几个实用的方法,这些方法提供给子类进行调用。
这个抽象类实现了 ExecutorService 中的 submit 方法,newTaskFor 方法用于将任务包装成 FutureTask。定义于最上层接口 Executor中的 void execute(Runnable command)
由于不需要获取结果,不会进行 FutureTask 的包装。
public abstract class AbstractExecutorService implements ExecutorService { // RunnableFuture 是用于获取执行结果的,我们常用它的子类 FutureTask
// 下面两个 newTaskFor 方法用于将我们的任务包装成 FutureTask 提交到线程池中执行
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask<T>(runnable, value);
} protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask<T>(callable);
} // 提交任务
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
// 1. 将任务包装成 FutureTask
RunnableFuture<Void> ftask = newTaskFor(task, null);
// 2. 交给执行器执行,execute 方法由具体的子类来实现
// 前面也说了,FutureTask 间接实现了Runnable 接口。
execute(ftask);
return ftask;
} public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
// 1. 将任务包装成 FutureTask
RunnableFuture<T> ftask = newTaskFor(task, result);
// 2. 交给执行器执行
execute(ftask);
return ftask;
} public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
// 1. 将任务包装成 FutureTask
RunnableFuture<T> ftask = newTaskFor(task);
// 2. 交给执行器执行
execute(ftask);
return ftask;
}
}
到这里,我们发现,这个抽象类包装了一些基本的方法,可是 submit等方法,它们都没有真正开启线程来执行任务,它们都只是在方法内部调用了 execute 方法,所以最重要的 execute(Runnable runnable) 方法还没出现,这里我们要说的就是 ThreadPoolExecutor 类了。
ThreadPoolExecutor
我们经常会使用 Executors
这个工具类来快速构造一个线程池,对于初学者而言,这种工具类是很有用的,开发者不需要关注太多的细节,只要知道自己需要一个线程池,仅仅提供必需的参数就可以了,其他参数都采用作者提供的默认值。
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
这里先不说有什么区别,它们最终都会导向这个构造方法:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
// 这几个参数都是必须要有的
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException(); this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
上面的构造方法中列出了我们最需要关心的几个属性了,下面逐个介绍下构造方法中出现的这几个属性:
- corePoolSize
线程池中的核心线程数。
- maximumPoolSize
最大线程数,线程池允许创建的最大线程数。如果当前阻塞队列满了,且继续提交任务,则创建新的线程执行任务,前提是当前线程数小于maximumPoolSize;当阻塞队列是无界队列, 则maximumPoolSize则不起作用, 因为无法提交至核心线程池的线程会一直持续地放入workQueue
- workQueue
用来保存等待被执行的任务的阻塞队列. 在JDK中提供了如下阻塞队列:
(1) ArrayBlockingQueue:基于数组结构的有界阻塞队列,按FIFO排序任务;
(2) LinkedBlockingQuene:基于链表结构的阻塞队列,按FIFO排序任务,吞吐量通常要高于ArrayBlockingQuene;
(3) SynchronousQuene:一个不存储元素的阻塞队列,每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQuene;
(4) priorityBlockingQuene:具有优先级的无界阻塞队列;
有兴趣的可以看看我前面关于BlockingQuene的文章
- keepAliveTime
空闲线程的保活时间,如果某线程的空闲时间超过这个值都没有任务给它做,那么可以被关闭了。注意这个值并不会对所有线程起作用,如果线程池中的线程数少于等于核心线程数 corePoolSize,那么这些线程不会因为空闲太长时间而被关闭,当然,也可以通过调用 allowCoreThreadTimeOut(true)
使核心线程数内的线程也可以被回收;默认情况下,该参数只在线程数大于corePoolSize
时才有用, 超过这个时间的空闲线程将被终止。
- unit
keepAliveTime的单位
- threadFactory
用于生成线程,一般我们可以用默认的就可以了。通常,我们可以通过它将我们的线程的名字设置得比较可读一些,如 Message-Thread-1, Message-Thread-2 类似这样。
- handler
线程池的饱和策略,当阻塞队列满了,且没有空闲的工作线程,如果继续提交任务,必须采取一种策略处理该任务,线程池提供了4种策略:
AbortPolicy:直接抛出异常,默认策略;
CallerRunsPolicy:用调用者所在的线程来执行任务;
DiscardOldestPolicy:丢弃阻塞队列中靠最前的任务,并执行当前任务;
DiscardPolicy:直接丢弃任务;
当然也可以根据应用场景实现RejectedExecutionHandler接口,自定义饱和策略,如记录日志或持久化存储不能处理的任务。
除了上面几个属性外,我们再看看其他重要的属性。
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); // 这里 COUNT_BITS 设置为 29(32-3),意味着前三位用于存放线程状态,后29位用于存放线程数
private static final int COUNT_BITS = Integer.SIZE - 3; // 000 11111111111111111111111111111
// 这里得到的是 29 个 1,也就是说线程池的最大线程数是 2^29-1=536870911
// 以我们现在计算机的实际情况,这个数量还是够用的
private static final int CAPACITY = (1 << COUNT_BITS) - 1; // 我们说了,线程池的状态存放在高 3 位中
// 运算结果为 111跟29个0:111 00000000000000000000000000000
private static final int RUNNING = -1 << COUNT_BITS;
// 000 00000000000000000000000000000
private static final int SHUTDOWN = 0 << COUNT_BITS;
// 001 00000000000000000000000000000
private static final int STOP = 1 << COUNT_BITS;
// 010 00000000000000000000000000000
private static final int TIDYING = 2 << COUNT_BITS;
// 011 00000000000000000000000000000
private static final int TERMINATED = 3 << COUNT_BITS; // 将整数 c 的低 29 位修改为 0,就得到了线程池的状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
// 将整数 c 的高 3 为修改为 0,就得到了线程池中的线程数
private static int workerCountOf(int c) { return c & CAPACITY; } private static int ctlOf(int rs, int wc) { return rs | wc; } private static boolean runStateLessThan(int c, int s) {
return c < s;
} private static boolean runStateAtLeast(int c, int s) {
return c >= s;
} private static boolean isRunning(int c) {
return c < SHUTDOWN;
}
在这里,介绍下线程池中的各个状态和状态变化的转换过程:
- RUNNING:这个没什么好说的,这是最正常的状态:接受新的任务,处理等待队列中的任务
- SHUTDOWN:不接受新的任务提交,但是会继续处理等待队列中的任务
- STOP:不接受新的任务提交,不再处理等待队列中的任务,中断正在执行任务的线程
- TIDYING:所有的任务都销毁了,workCount 为 0。线程池的状态在转换为 TIDYING 状态时,会执行钩子方法 terminated()
- TERMINATED:terminated() 方法结束后,线程池的状态就会变成这个
看了这几种状态的介绍,读者大体也可以猜到十之八九的状态转换了,各个状态的转换过程有以下几种:
- RUNNING -> SHUTDOWN:当调用了 shutdown() 后,会发生这个状态转换,这也是最重要的
- (RUNNING or SHUTDOWN) -> STOP:当调用 shutdownNow() 后,会发生这个状态转换,这下要清楚 shutDown() 和 shutDownNow() 的区别了
- SHUTDOWN -> TIDYING:当任务队列和线程池都清空后,会由 SHUTDOWN 转换为 TIDYING
- STOP -> TIDYING:当任务队列清空后,发生这个转换
- TIDYING -> TERMINATED:这个前面说了,当 terminated() 方法结束后
另外,我们还要看看一个内部类 Worker,因为 Doug Lea 把线程池中的线程包装成了一个个 Worker,翻译成工人,就是线程池中做任务的线程。所以到这里,我们知道任务是 Runnable(内部叫 task 或 command),线程是 Worker。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable{
private static final long serialVersionUID = 6138294804551838833L; // 这个是真正的线程,任务靠你啦
final Thread thread; // 前面说了,这里的 Runnable 是任务。为什么叫 firstTask?因为在创建线程的时候,如果同时指定了
// 这个线程起来以后需要执行的第一个任务,那么第一个任务就是存放在这里的(线程可不止执行这一个任务)
// 当然了,也可以为 null,这样线程起来了,自己到任务队列(BlockingQueue)中取任务(getTask 方法)就行了
Runnable firstTask; // 用于存放此线程完全的任务数,注意了,这里用了 volatile,保证可见性
volatile long completedTasks; // Worker 只有这一个构造方法,传入 firstTask,也可以传 null
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 调用 ThreadFactory 来创建一个新的线程,这里创建的线程到时候用来执行任务
this.thread = getThreadFactory().newThread(this);
} // 这里调用了外部类的 runWorker 方法
public void run() {
runWorker(this);
} ...
}
有了上面的这些基础后,我们终于可以看看 ThreadPoolExecutor 的 execute 方法了,前面源码分析的时候也说了,各种方法都最终依赖于 execute 方法:
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException(); // 前面说的那个表示 "线程池状态" 和 "线程数" 的整数
int c = ctl.get(); // 如果当前线程数少于核心线程数,那么直接添加一个 worker 来执行任务,
// 创建一个新的线程,并把当前任务 command 作为这个线程的第一个任务(firstTask)
if (workerCountOf(c) < corePoolSize) {
// 添加任务成功,那么就结束了。提交任务嘛,线程池已经接受了这个任务,这个方法也就可以返回了
// 至于执行的结果,到时候会包装到 FutureTask 中。
// 这里的true代表当前线程数小于corePoolSize,表示以corePoolSize为线程数界限
if (addWorker(command, true))
return;
c = ctl.get();
}
// 到这里说明,要么当前线程数大于等于核心线程数,要么刚刚 addWorker 失败了
// 如果线程池处于 RUNNING 状态,把这个任务添加到任务队列 workQueue 中
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 如果线程池已不处于 RUNNING 状态,那么移除已经入队的这个任务,并且执行拒绝策略
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 如果 workQueue 队列满了,那么进入到这个分支
// 这里的false代表当前线程数大于corePoolSize,表示以 maximumPoolSize 为界创建新的 worker
// 如果失败,说明当前线程数已经达到 maximumPoolSize,执行拒绝策略
else if (!addWorker(command, false))
reject(command);
}
我们可以看看大体的执行流程
这个方法非常重要 addWorker(Runnable firstTask, boolean core) 方法,我们看看它是怎么创建新的线程的:
// 第一个参数是准备提交给这个线程执行的任务,之前说了,可以为 null
// 第二个参数为 true 代表使用核心线程数 corePoolSize 作为创建线程的界线,也就说创建这个线程的时候,
// 如果线程池中的线程总数已经达到 corePoolSize,那么返回false
// 如果是 false,代表使用最大线程数 maximumPoolSize 作为界线,线程池中的线程总数已经达到 maximumPoolSize,那么返回false
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c); // 如果线程池已关闭,并满足以下条件之一,那么不创建新的 worker:
// 1. 线程池状态大于 SHUTDOWN,其实也就是 STOP, TIDYING, 或 TERMINATED
// 2. firstTask != null
// 3. workQueue.isEmpty()
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false; for (;;) {
int wc = workerCountOf(c);
//这里就是通过core参数对当前线程数的判断
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get();
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
} /*
* 到这里,我们认为在当前这个时刻,可以开始创建线程来执行任务了,
*/ // worker 是否已经启动
boolean workerStarted = false;
// 是否已将这个 worker 添加到 workers 这个 HashSet 中
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
// 把 firstTask 传给 worker 的构造方法
w = new Worker(firstTask);
// 取 worker 中的线程对象,之前说了,Worker的构造方法会调用 ThreadFactory 来创建一个新的线程
final Thread t = w.thread;
if (t != null) {
// 这个是整个类的全局锁,因为关闭一个线程池需要这个锁,至少我持有锁的期间,线程池不会被关闭
mainLock.lock();
try { int c = ctl.get();
int rs = runStateOf(c); // 小于 SHUTTDOWN 那就是 RUNNING
// 如果等于 SHUTDOWN,前面说了,不接受新的任务,但是会继续执行等待队列中的任务
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
// worker 里面的 thread 可不能是已经启动的
if (t.isAlive())
throw new IllegalThreadStateException();
// 加到 workers 这个 HashSet 中
workers.add(w);
int s = workers.size();
// largestPoolSize 用于记录 workers 中的个数的最大值
// 因为 workers 是不断增加减少的,通过这个值可以知道线程池的大小曾经达到的最大值
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 添加成功的话,启动这个线程
if (workerAdded) {
// 启动线程,最重要的就是这里,下面我们会讲解如何执行任务
t.start();
workerStarted = true;
}
}
} finally {
// 如果线程没有启动,需要做一些清理工作,如前面 workCount 加了 1,将其减掉
if (! workerStarted)
addWorkerFailed(w);
}
// 返回线程是否启动成功
return workerStarted;
}
上面第81行代码处已经启动了线程,w = new Worker(firstTask); t = w.thread,我们接着看看Worker这个类
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable{
private static final long serialVersionUID = 6138294804551838833L;
final Thread thread;
Runnable firstTask;
volatile long completedTasks; // Worker 只有这一个构造方法,传入 firstTask
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 调用 ThreadFactory 来创建一个新的线程,这里创建的线程到时候用来执行任务
// 我们发现创建线程的时候传入的值是this,我们知道创建线程可以通过继承Runnable的方法,
// Worker继承了Runnable,并且下面重写了run()方法
this.thread = getThreadFactory().newThread(this);
} // 由上面创建线程时传入的this,上面的thread启动后,会执行这里的run()方法,并且此时runWorker传入的也是this
public void run() {
runWorker(this);
}
}
继续往下看 runWorker 方法:
// 此方法由 worker 线程启动后调用,这里用一个 while 循环来不断地从等待队列中获取任务并执行
// 前面说了,worker 在初始化的时候,可以指定 firstTask,那么第一个任务也就可以不需要从队列中获取
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
// 该线程的第一个任务(如果有的话)
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 循环调用 getTask 获取任务
while (task != null || (task = getTask()) != null) {
w.lock();
// 如果线程池状态大于等于 STOP,那么意味着该线程也要中断
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
// 到这里终于可以执行任务了,这里是最重要的,task是什么?是Worker 中的firstTask属性
// 也就是上面我们使用示例里面的 new MyRunnable()实例,这里就是真正的执行run方法里面的代码
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
// 一个任务执行完了,这个线程还可以复用,接着去队列中拉取任务执行
// 置空 task,准备 getTask 获取下一个任务
task = null;
// 累加完成的任务数
w.completedTasks++;
// 释放掉 worker 的独占锁
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 如果到这里,需要执行线程关闭:
// 说明 getTask 返回 null,也就是超过corePoolSize的线程过了超时时间还没有获取到任务,也就是说,这个 worker 的使命结束了,执行关闭
processWorkerExit(w, completedAbruptly);
}
}
我们看看 getTask() 是怎么获取任务的
// 此方法有三种可能:
// 1. 阻塞直到获取到任务返回。我们知道,默认 corePoolSize 之内的线程是不会被回收的,
// 它们会一直等待任务
// 2. 超时退出。keepAliveTime 起作用的时候,也就是如果这么多时间内都没有任务,那么应该执行关闭
// 3. 如果发生了以下条件,此方法必须返回 null:
// - 池中有大于 maximumPoolSize 个 workers 存在(通过调用 setMaximumPoolSize 进行设置)
// - 线程池处于 SHUTDOWN,而且 workQueue 是空的,前面说了,这种不再接受新的任务
// - 线程池处于 STOP,不仅不接受新的线程,连 workQueue 中的线程也不再执行
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out? retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 两种可能
// 1. rs == SHUTDOWN && workQueue.isEmpty()
// 2. rs >= STOP
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
// CAS 操作,减少工作线程数
decrementWorkerCount();
return null;
} boolean timed; // Are workers subject to culling?
for (;;) {
int wc = workerCountOf(c);
// 允许核心线程数内的线程回收,或当前线程数超过了核心线程数,那么有可能发生超时关闭
timed = allowCoreThreadTimeOut || wc > corePoolSize;
if (wc <= maximumPoolSize && ! (timedOut && timed))
break;
if (compareAndDecrementWorkerCount(c))
return null;
c = ctl.get(); // Re-read ctl
// compareAndDecrementWorkerCount(c) 失败,线程池中的线程数发生了改变
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
// wc <= maximumPoolSize 同时没有超时
try {
// 到 workQueue 中获取任务
// 如果timed=wc > corePoolSize=false,我们知道核心线程数之内的线程永远不会销毁,则执行workQueue.take();我前面文章中讲过,take()方法是阻塞方法,如果队里中有任务则取到任务,如果没有任务,则一直阻塞在这里知道有任务被唤醒。
//如果timed=wc > corePoolSize=true,这里将执行超时策略,poll(keepAliveTime, TimeUnit.NANOSECONDS)会阻塞keepAliveTime这么长时间,没超时就返回任务,超时则返回null.
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
// 如果此 worker 发生了中断,采取的方案是重试
// 解释下为什么会发生中断,这个读者要去看 setMaximumPoolSize 方法,
// 如果开发者将 maximumPoolSize 调小了,导致其小于当前的 workers 数量,
// 那么意味着超出的部分线程要被关闭。重新进入 for 循环,自然会有部分线程会返回 null
timedOut = false;
}
}
}
到这里,基本上也说完了整个流程,读者这个时候应该回到 execute(Runnable command) 方法,有两种情况会调用 reject(command) 来处理任务,因为按照正常的流程,线程池此时不能接受这个任务,所以需要执行我们的拒绝策略。接下来,我们说一说 ThreadPoolExecutor 中的拒绝策略。
final void reject(Runnable command) {
// 执行拒绝策略
handler.rejectedExecution(command, this);
}
此处的 handler 我们需要在构造线程池的时候就传入这个参数,它是 RejectedExecutionHandler 的实例。
RejectedExecutionHandler 在 ThreadPoolExecutor 中有四个已经定义好的实现类可供我们直接使用,当然,我们也可以实现自己的策略,不过一般也没有必要。
// 只要线程池没有被关闭,那么由提交任务的线程自己来执行这个任务。
public static class CallerRunsPolicy implements RejectedExecutionHandler {
public CallerRunsPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
r.run();
}
}
} // 不管怎样,直接抛出 RejectedExecutionException 异常
// 这个是默认的策略,如果我们构造线程池的时候不传相应的 handler 的话,那就会指定使用这个
public static class AbortPolicy implements RejectedExecutionHandler {
public AbortPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
} // 不做任何处理,直接忽略掉这个任务
public static class DiscardPolicy implements RejectedExecutionHandler {
public DiscardPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
}
} // 这个相对霸道一点,如果线程池没有被关闭的话,
// 把队列队头的任务(也就是等待了最长时间的)直接扔掉,然后提交这个任务到等待队列中
public static class DiscardOldestPolicy implements RejectedExecutionHandler {
public DiscardOldestPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
e.getQueue().poll();
e.execute(r);
}
}
}
到这里,ThreadPoolExecutor 算是分析得差不多了
总结
我们简单回顾下线程创建的流程
- 如果当前线程数少于 corePoolSize,那么提交任务的时候创建一个新的线程,并由这个线程执行这个任务;
- 如果当前线程数已经达到 corePoolSize,那么将提交的任务添加到队列中,等待线程池中的线程去队列中取任务;
- 如果队列已满,那么创建新的线程来执行任务,需要保证池中的线程数不会超过 maximumPoolSize,如果此时线程数超过了 maximumPoolSize,那么执行拒绝策略。
并发编程(十一)—— Java 线程池 实现原理与源码深度解析(一)的更多相关文章
- 并发编程(十二)—— Java 线程池 实现原理与源码深度解析 之 submit 方法 (二)
在上一篇<并发编程(十一)—— Java 线程池 实现原理与源码深度解析(一)>中提到了线程池ThreadPoolExecutor的原理以及它的execute方法.这篇文章是接着上一篇文章 ...
- 并发编程(十三)—— Java 线程池 实现原理与源码深度解析 之 Executors(三)
前两篇文章讲了线程池的源码分析,再来看这篇文章就比较简单了, 本文主要讲解 Executors 这个工具类,看看长江创建线程池的几种方法. newFixedThreadPool 生成一个固定大小的线程 ...
- 并发编程(十五)——定时器 ScheduledThreadPoolExecutor 实现原理与源码深度解析
在上一篇线程池的文章<并发编程(十一)—— Java 线程池 实现原理与源码深度解析(一)>中从ThreadPoolExecutor源码分析了其运行机制.限于篇幅,留下了Scheduled ...
- Java并发指南12:深度解读 java 线程池设计思想及源码实现
深度解读 java 线程池设计思想及源码实现 转自 https://javadoop.com/2017/09/05/java-thread-pool/hmsr=toutiao.io&utm_ ...
- 【转载】深度解读 java 线程池设计思想及源码实现
总览 开篇来一些废话.下图是 java 线程池几个相关类的继承结构: 先简单说说这个继承结构,Executor 位于最顶层,也是最简单的,就一个 execute(Runnable runnable) ...
- 线程池 ThreadPoolExecutor 原理及源码笔记
前言 前面在学习 JUC 源码时,很多代码举例中都使用了线程池 ThreadPoolExecutor,并且在工作中也经常用到线程池,所以现在就一步一步看看,线程池的源码,了解其背后的核心原理. 公众号 ...
- Java并发编程:Java线程池
转载自:http://www.cnblogs.com/dolphin0520/p/3932921.html 在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题 ...
- Java并发编程:Java线程池核心ThreadPoolExecutor的使用和原理分析
目录 引出线程池 Executor框架 ThreadPoolExecutor详解 构造函数 重要的变量 线程池执行流程 任务队列workQueue 任务拒绝策略 线程池的关闭 ThreadPoolEx ...
- 并发编程(十四)—— ScheduledThreadPoolExecutor 实现原理与源码深度解析 之 DelayedWorkQueue
我们知道线程池运行时,会不断从任务队列中获取任务,然后执行任务.如果我们想实现延时或者定时执行任务,重要一点就是任务队列会根据任务延时时间的不同进行排序,延时时间越短地就排在队列的前面,先被获取执行. ...
随机推荐
- SQL 获取表结构
select [表名]=c.Name, [表说明]=isnull(f.[value],''), [列序号]=a.Column_id, [列名]=a.Name, [列说明]=isnull(e.[valu ...
- input里面的submit鼠标按钮属性cursor
属性cursor 属性值: pointer 小手 move 移动 help 帮助 wait 等待
- Egret的按钮事件处理
首先要在exml内要设置有对应按钮的ID 2,编写TypeScript脚本: public mybutton:eui.Button; 函数内部:this.mybutton.addEventListen ...
- golang 内存模型
1,是什么 是一套规范.内存操作指导 解决多线程编程的 程序的 原子性,有序性,可见性(主要)的问题. 多核操作系统,会存在缓存不一致的情况,说到底是一个同步的问题. 2, 内容 内存模型,除了定义了 ...
- PeopleSoft 后台更新密码
一.SQL脚本 where t.oprid='&opridName' ; 二.Data Mover 1.指定用户加密ENCRYPT_PASSWORD 用户名;2.所有用户ENCRYPT_PAS ...
- VS Code 常用插件
1.Chinese (Simplified) Language Pack for Visual Studio Code VS Code软件汉化 2.Auto Close Ta ...
- python 面试题知识回顾
1. python 函数 的参数传递 a = 1 def fun(a): a = 2 fun(a) print a # 1 a = [] def fun(a): a.append(1) fun(a) ...
- python 用正则处理日志实例
前提: 了解正则基本语法 import re with open('top10_xiaozhuang_net.log','r') as f1: #读取日志文件 subject=f1.rea ...
- javascript基础(Array)
1,join() Array.join(),不改变原数组,将数组中所有元素转换为字符串并连接在一起,返回最后生成的字符串 let a=[1,2,3]; a.join(); // =>" ...
- Vue 学习笔记 — filter
简书 对将要插入html的对象进行处理 一个简单的Vue示例 基本过滤器用法 带参数的过滤器 全局过滤器 (这张图片有点问题,最后显示的应该是 hello world不是null) 过滤器的简单应用 ...