「学习笔记」min_25筛
前置姿势
其实不看也没关系
用途和限制
在\(\mathrm{O}(\frac{n^{0.75}}{\log n})\)的时间内求出一个积性函数的前缀和。
所求的函数\(\mathbf f(x)\)要满足以下条件:
- \(\mathbf f(p)\)是一个多项式,其中\(p\)是质数
- \(\mathbf f(p^c)\)要能够快速计算。
算法流程
首先我们需要求出对于每一个\(\left\lfloor \frac ni\right\rfloor\)求出\(\sum_{i=1}^x [i \in P] \mathbf f(i)\),其中\(P\)是质数集合。
首先筛出\(\sqrt n\)以内的质数,设\(P_j\)表示从小到大第\(j\)个质数。
设\(\mathbf g(n, j)\)表示所有最小质因子大于\(P_j\)的数加上质数的\(\mathbf f(i)\)的和。
那么\(\mathbf g(n, |P|)\)就是所求。
考虑\(\mathbf g(n, j)\)的转移,分两种情况。
\(P_j^2 > n\)
这个质数不会造成任何影响,于是\(\mathbf g(n, j) = \mathbf g(n, j - 1)\)。
\(P_J^2 \leq n\)
这里我们要考虑筛掉了多少个数字。
那么筛掉的数字中一定含有最小质因子\(P_j\),所以我们考虑减去\(\mathbf g(\frac n{P_j}, j - 1)\),但是这样我们多减了前\(j - 1\)个质数的\(\mathbf f\)之和,所以要加上\(\sum_{i=1}^{j - 1}\mathbf f(P_j) = \mathbf g(P_{j - 1}, j - 1)\)
总结一下就是:
\[
\mathbf g(n,j)=
\begin{cases}
\mathbf g(n,j-1)&P_j^2\gt n\\
\mathbf g(n,j-1)-\mathbf f(P_j)[\mathbf g(\frac{n}{P_j},j-1)-\mathbf g(P_{j - 1}, j - 1)]&P_j^2\leq n
\end{cases}
\]
这里可以滚动数组求一下。(感觉和魔力筛很像呢)
到这里我们发现我们已经对于\(x = \left\lfloor \frac ni\right\rfloor\)求出\(\sum_{i=1}^x [i \in P]\mathbf f(i)\)
设\(\mathbf S(n, j) = \sum_{i=1}^n [\mathrm{minp}(i) \geq P_j]\mathbf f(i)\)
那么最终的答案为\(\mathbf S(n, 1) + 1\)
然后我们将\(n\)以内的数字分为质数和合数
质数部分我们得出答案了,为\(\mathbf g(n, |P|) - \mathbf g(P_{j - 1}, j - 1)\)
考虑合数,其实很简单,考虑枚举最小质因子和其出现次数,然后爆算就可以了。
\[
\mathbf S(n,j)=\mathbf g(n, |P|) - \mathbf g(P_{j - 1}, j - 1)+\sum_{k=j}^{P_k^2\le n}\sum_{e=1}^{P_k^{e+1}\le n}\mathbf S(\frac{n}{P_k^e},k+1)\times \mathbf f(P_k^e)+\mathbf f(P_k^{e+1})
\]
然后就没啦。
最后讲一个东西,就是\(\mathbf S\)不用记忆化。
例题什么的以后再补吧。
「学习笔记」min_25筛的更多相关文章
- 「学习笔记」Min25筛
「学习笔记」Min25筛 前言 周指导今天模拟赛五分钟秒第一题,十分钟说第二题是 \(\text{Min25}\) 筛板子题,要不是第三题出题人数据范围给错了,周指导十五分钟就 \(\text{AK ...
- 「算法笔记」Min_25 筛
戳 这里(加了密码).虽然写的可能还算清楚,但还是不公开了吧 QwQ. 真的想看的 私信可能会考虑给密码 qwq.就放个板子: //LOJ 6053 简单的函数 f(p^c)=p xor c #inc ...
- 「学习笔记」FFT 之优化——NTT
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- 「学习笔记」Treap
「学习笔记」Treap 前言 什么是 Treap ? 二叉搜索树 (Binary Search Tree/Binary Sort Tree/BST) 基础定义 查找元素 插入元素 删除元素 查找后继 ...
- 「学习笔记」字符串基础:Hash,KMP与Trie
「学习笔记」字符串基础:Hash,KMP与Trie 点击查看目录 目录 「学习笔记」字符串基础:Hash,KMP与Trie Hash 算法 代码 KMP 算法 前置知识:\(\text{Border} ...
- 「学习笔记」wqs二分/dp凸优化
[学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...
- 「学习笔记」ST表
问题引入 先让我们看一个简单的问题,有N个元素,Q次操作,每次操作需要求出一段区间内的最大/小值. 这就是著名的RMQ问题. RMQ问题的解法有很多,如线段树.单调队列(某些情况下).ST表等.这里主 ...
- 「学习笔记」递推 & 递归
引入 假设我们想计算 \(f(x) = x!\).除了简单的 for 循环,我们也可以使用递归. 递归是什么意思呢?我们可以把 \(f(x)\) 用 \(f(x - 1)\) 表示,即 \(f(x) ...
随机推荐
- Mybatis sql映射文件浅析 Mybatis简介(三)
简介 除了配置相关之外,另一个核心就是SQL映射,MyBatis 的真正强大也在于它的映射语句. Mybatis创建了一套规则以XML为载体映射SQL 之前提到过,各项配置信息将Mybatis应用的整 ...
- Python四步实现决策树ID3算法,参考机器学习实战
一.编写计算历史数据的经验熵函数 from math import log def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCo ...
- Ubuntu中安装 mercurial – TortoiseHG
sudo add-apt-repository ppa:tortoisehg-ppa/releases sudo add-apt-repository ppa:mercurial-ppa/releas ...
- js内存深入学习(一)
一. 内存空间储存 某些情况下,调用堆栈中函数调用的数量超出了调用堆栈的实际大小,浏览器会抛出一个错误终止运行.这个就涉及到内存问题了. 1. 数据结构类型 栈: 后进先出(LIFO)的数据结构 堆 ...
- Spring Cloud Alibaba基础教程:Nacos配置的加载规则详解
前情回顾: <Spring Cloud Alibaba基础教程:使用Nacos实现服务注册与发现> <Spring Cloud Alibaba基础教程:支持的几种服务消费方式(Res ...
- javascript基础修炼(8)——指向FP世界的箭头函数
一. 箭头函数 箭头函数是ES6语法中加入的新特性,而它也是许多开发者对ES6仅有的了解,每当面试里被问到关于"ES6里添加了哪些新特性?"这种问题的时候,几乎总是会拿箭头函数来应 ...
- 博弈论进阶之Every-SG
Every-SG 给定一张无向图,上面有一些棋子,两个顶尖聪明的人在做游戏,每人每次必须将可以移动的棋子进行移动,不能移动的人输 博弈分析 题目中的要求实际是"不论前面输与否,只要最后一个棋 ...
- Vue组件的is具体用法
1.为什么要使用is 在vue的官网组件部分中,有明确的描述:当使用 DOM 作为模板时 (例如,使用 el 选项来把 Vue 实例挂载到一个已有内容的元素上),你会受到 HTML 本身的一些限制,因 ...
- java新知识系列 六
sleep和wait的区别有: Servlet方法的使用 方法重写的规则,以及两同两小一大原则: DispatcherServlet的解析 依赖注入DU和控制反转Ioc AOP和OOP的区别 Spri ...
- App跟web定位元素页面相互切换
很多QA在做UI自动化或者App自动化的时候,会遇到在web页面要抓取App模式的元素,或者是在App要抓取H5页面的元素,从网上整理了一些方法,不一定能解决,但是试一下也未尝不可,如果解决了就记得关 ...