Suppose that $f\in L^2$, $g\in \scrD'$, if $$\bex f=g,\mbox{ in }\scrD', \eex$$ then $f=g\in L^2$.

In fact, $\scrD\subset L^2 \ra L^2\subset\scrD'$. Thus $h=f-g=0\in \scrD'$, the zero element is the same in $L^2$ and $\scrD'$, and hence $h=f-g=0\in L^2$, $g=f-(f-g)\in L^2$.

[再寄小读者之数学篇](2014-09-22 distributions and square integrable functions)的更多相关文章

  1. [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)

    (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...

  2. [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])

    设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...

  3. [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

    $$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...

  4. [再寄小读者之数学篇](2014-06-26 Besov space estimates)

    (1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...

  5. [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)

    $$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...

  6. [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)

    For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...

  7. [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

    设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...

  8. [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)

    (2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...

  9. [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)

    试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...

  10. [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)

    设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.

随机推荐

  1. HBase Client JAVA API

    旧 的 HBase 接口逻辑与传统 JDBC 方式很不相同,新的接口与传统 JDBC 的逻辑更加相像,具有更加清晰的 Connection 管理方式. 同时,在旧的接口中,客户端何时将 Put 写到服 ...

  2. nginx报错:failed (13: Permission denied)

    vim nginx.conf 修改user nginx为当前系统用户,如:user root

  3. PHP7--PHP的一次重大变革

    PHP7--PHP的一次重大变革 一.写在开头 PHP7是PHP编程语言全新的一个版本,主要在性能方面获得了极大的提升.官方的文档显示,PHP7可以达到PHP5.x版本两倍的性能.同时还对PHP的语法 ...

  4. 第五章:Realm

    一,UserRealm 1,UserRealm父类AuthorizingRealm将获取Subject相关信息分成两步: 1.1,获取身份验证信息(doGetAuthenticationInfo): ...

  5. 基于 WebGL 3D 的 HTML5 档案馆可视化管理系统

    前言 档案管理系统是通过建立统一的标准以规范整个文件管理,包括规范各业务系统的文件管理的完整的档案资源信息共享服务平台,主要实现档案流水化采集功能.为企事业单位的档案现代化管理,提供完整的解决方案,档 ...

  6. Golang 入门 : 字符串

    在 Golang 中,字符串是一种基本类型,这一点和 C 语言不同.C 语言没有原生的字符串类型,而是使用字符数组来表示字符串,并以字符指针来传递字符串.Golang 中的字符串是一个不可改变的 UT ...

  7. Linux配置外网访问mysql

    stream{    upstream abc{        server 192.168.8.249:3306;    }    server{        listen 9211 ; prox ...

  8. Linux C/C++ 链接选项之静态库--whole-archive,--no-whole-archive和--start-group, --end-group

    参照这两篇博客: http://stackoverflow.com/questions/805555/ld-linker-question-the-whole-archive-option http: ...

  9. java 虚拟机内存模型

    [声明] 欢迎转载,但请保留文章原始出处→_→ 文章来源:[http://www.cnblogs.com/smyhvae/p/4748392.html] 文章来源:[http://www.cnblog ...

  10. MyBatis基础:MyBatis缓存(5)

    1. MyBatis缓存简介 MyBatis提供支持一级缓存及二级缓存. 一级缓存: 2.MyBatis一级缓存