目前在学习pytorch,自己写了一些例子,在这里记录下来一些报错及总结

1. RuntimeError: Expected object of type torch.FloatTensor but found type torch.cuda.FloatTensor for argument #2 'weight'

详细报错信息

 Traceback (most recent call last):
File "dogvscat-resnet.py", line , in <module>
outputs = net(inputs)
File "/home/lzx/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line , in __call__
result = self.forward(*input, **kwargs)
File "/home/lzx/anaconda3/envs/pytorch/lib/python3.6/site-packages/torchvision-0.2.1-py3.6.egg/torchvision/models/resnet.py", li
ne , in forward
File "/home/lzx/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/modules/module.py", line , in __call__
result = self.forward(*input, **kwargs)
File "/home/lzx/anaconda3/envs/pytorch/lib/python3.6/site-packages/torch/nn/modules/conv.py", line , in forward
self.padding, self.dilation, self.groups)
RuntimeError: Expected object of type torch.FloatTensor but found type torch.cuda.FloatTensor for argument # 'weight'

参考:https://github.com/wohlert/semi-supervised-pytorch/issues/7

这个报错其实比较隐蔽,用Google搜索的第一页都没什么参考价值,只有上面的这个链接里提醒了我,

在GPU上进行训练时,需要把模型和数据都加上.cuda(),如

model.cuda()

但是对于数据,这个.cuda()并非是inplace操作,就是说不单单是在变量名后面加上.cuda()就可以了

还必须显示的赋值回去,即:

data.cuda()是不行的,而

data = data.cuda()才是可以的。

这样的显示声明的细节非常重要。

示例代码:用LeNet做猫狗的二分类,自己写的代码

请重点关注以下行的写法:46 47 57 58 96 97

 import os
from PIL import Image
import numpy as np
import torch
from torchvision import transforms as T
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils import data
import torchvision as tv
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化 transform = T.Compose([
T.Resize(32), # 缩放图片(Image),保持长宽比不变,最短边为224像素
T.CenterCrop(32), # 从图片中间切出224*224的图片
T.ToTensor(), # 将图片(Image)转成Tensor,归一化至[0, 1]
T.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]) # 标准化至[-1, 1],规定均值和标准差
]) class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 2) def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x net = Net()
if torch.cuda.is_available():
print("Using GPU")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device) def test():
correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数
# 由于测试的时候不需要求导,可以暂时关闭autograd,提高速度,节约内存
with torch.no_grad():
for data in testloader:
images, labels = data
images = images.to(device)
labels = labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum() print('Accuracy in the test dataset: %.1f %%' % (100 * correct / total)) train_dataset = ImageFolder('/home/lzx/datasets/dogcat/sub-train/', transform=transform)
test_dataset = ImageFolder('/home/lzx/datasets/dogcat/sub-test/', transform=transform)
# dataset = DogCat('/home/lzx/datasets/dogcat/sub-train/', transforms=transform)
# train_dataset = ImageFolder('/Users/lizhixuan/PycharmProjects/pytorch_learning/Chapter5/sub-train/', transform=transform)
# test_dataset = ImageFolder('/Users/lizhixuan/PycharmProjects/pytorch_learning/Chapter5/sub-test/', transform=transform) trainloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=512,
shuffle=True,
num_workers=4)
testloader = torch.utils.data.DataLoader(
test_dataset,
batch_size=512,
shuffle=False,
num_workers=4)
classes = ('cat', 'dog') criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) print("Starting to train")
torch.set_num_threads(8)
for epoch in range(1000): running_loss = 0.0
for i, data in enumerate(trainloader, 0): # 输入数据
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device) # 梯度清零
optimizer.zero_grad() # forward + backward
outputs = net(inputs)
loss = criterion(outputs, labels)
# print("outputs %s labels %s" % (outputs, labels))
loss.backward() # 更新参数
optimizer.step() # 打印log信息
# loss 是一个scalar,需要使用loss.item()来获取数值,不能使用loss[0]
running_loss += loss.item()
print_gap = 10
if i % print_gap == (print_gap-1): # 每1000个batch打印一下训练状态
print('[%d, %5d] loss: %.3f' \
% (epoch+1, i+1, running_loss / print_gap))
running_loss = 0.0
test()
print('Finished Training')

这样一来,就完全明白了如何把代码放在GPU上运行了,哈哈

Pytorch 报错总结的更多相关文章

  1. pytorch报错:ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1,512,1,1])

    1.pytorch报错:ValueError: Expected more than 1 value per channel when training, got input size torch.S ...

  2. Pytorch报错:cuda runtime error (59) : device-side assert triggered at /pytorch/aten/src/THC/generic/THCTensorMath.cu:26

    Pytorch报错:cuda runtime error (59) : device-side assert triggered at /pytorch/aten/src/THC/generic/TH ...

  3. Anaconda 安装 pytorch报错解决方法

    一.安装Pytorch: # -c 指定用pytorch镜像源下载软件conda install pytorch torchvision cpuonly -c pytorch 报错: 二.配置: ch ...

  4. windows安装Pytorch报错:from torch._C import * ImportError: DLL load failed: 找不到指定的模块”解决方案

    问题描述 python环境下安装cpu版本pytorch,安装成功,但是导入出错. 报错如下 解决方法 参考博客,大家解决方法大概有:升级numpy.添加.dll文件到环境变量,均没有成功.本地pyt ...

  5. 【pytorch报错解决】expected input to have 3 channels, but got 1 channels instead

    遇到的问题 数据是png图像的时候,如果用PIL读取图像,获得的是单通道的,不是多通道的.虽然使用opencv读取图片可以获得三通道图像数据,如下: def __getitem__(self, idx ...

  6. Pytorch报错记录

    1.BrokenPipeError 执行以下命令时: a,b = iter(train_loader).next() 报错:BrokenPipeError: [Errno 32] Broken pip ...

  7. 服务器 PyTorch 报错 重装 PyTorch

    两个代码,pix2pix + CycleGan ,  wgan-gp 都是 pytorch 写的, 在服务器端运行,均存在下列问题,故判定是 pytorch 的安装问题. Traceback (mos ...

  8. pytorch报错:AttributeError: 'module' object has no attribute '_rebuild_tensor_v2'

    转载自: https://blog.csdn.net/qq_24305433/article/details/80844548 由于训练模型时使用的是新版本的pytorch,而加载时使用的是旧版本的p ...

  9. pytorch 加载mnist数据集报错not gzip file

    利用pytorch加载mnist数据集的代码如下 import torchvision import torchvision.transforms as transforms from torch.u ...

随机推荐

  1. Could not autowire. No beans of 'xxxx' type found的错误

    在Idea的spring工程里,经常会遇到Could not autowire. No beans of 'xxxx' type found的错误提示.但程序的编译和运行都是没有问题的,这个错误提示并 ...

  2. PHP设置凌晨时间戳

    这种需求应是很常见的,但一直没有时间整理. 一天可以领取2次奖励,今天领完了那就等明天再来. 这里面涉及到一个很重要的一点就是凌晨12点的时间戳,以前一直在前端去做判断.最近发现在后端用PHP获取凌晨 ...

  3. 基于观察者模式-----otto源码分析

    一.otto简介 otto是支付公司square一个专注于android的开源项目,该项目是一个event bus模式的消息框架,是一个基于Guava的增强型事件总线.旨在将应用程序的不同部分分离,同 ...

  4. unity 中让Text的文字动态刷新形式

    第一种刷新文字形式 using UnityEngine; using System.Collections; using UnityEngine.UI; public class SensorText ...

  5. 解决Charles https抓包显示<unknown>

    用mac电脑开发安卓的都应该知道青花瓷吧~(不知道的都是小菜鸡,邪恶.jpg) Charles类似Windows版的Fiddler(没用过Fiddler的都是小菜鸡中的战斗机,嘲笑.png),基本用法 ...

  6. 使用labelme制作自己的数据集

    # python3 conda create --name=labelme python=3.6 source activate labelme # conda install -c conda-fo ...

  7. chrome 无头浏览器的使用

    在linux服务器上安装chrome : ubuntu: 下载页面https://www.chrome64bit.com/index.php/google-chrome-64-bit-for-linu ...

  8. Java利用cors实现跨域请求

    由于ajax本身实际上是通过XMLHttpRequest对象来进行数据的交互,而浏览器出于安全考虑,不允许js代码进行跨域操作,所以会警告 网站开发,在某些情况下需要用到跨域. 什么是跨域? 跨域,指 ...

  9. SQL-52 获取Employees中的first_name,查询按照first_name最后两个字母,按照升序进行排列

    题目描述 获取Employees中的first_name,查询按照first_name最后两个字母,按照升序进行排列CREATE TABLE `employees` (`emp_no` int(11) ...

  10. 汉明码(Hamming)编码与纠错原理

    一 汉明码的编解码说明 (一)编码 Hamming(12,8) N=12,表示编码后的比特长度 K=8,待编码数据的比特长度 R=N-K=4,校验位的比特长度 D=3 汉明距离:相邻行之间不同比特数据 ...