Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topology on \(A \times B\) is the same as the topology \(A \times B\) inherits as a subspace of \(X \times Y\).

Comment: To prove the identity of two topologies, we can either show they mutually contain each other or prove the equivalence of their bases. Because a topological basis has smaller number of elements or cardinality than the corresponding topology, proof via basis is more efficient.

Proof: Let \(\mathcal{C}\) be the topological basis of \(X\) and \(\mathcal{D}\) be the basis of \(Y\). Because \(A \subset X\) and \(B \subset Y\), the subspace topological bases of them are \(\mathcal{B}_A = \{C \cap A \vert \forall C \in \mathcal{C} \}\) and \(\mathcal{B}_B = \{D \cap B \vert \forall D \in \mathcal{D} \}\) respectively according to Lemma 16.1.

Due to Lemma 15.1, the basis of the product topology on \(A \times B\) is

\[
\mathcal{B}_{A \times B} = \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]

Meanwhile, the basis of the product topology on \(X \times Y\) is

\[
\mathcal{B}_{X \times Y} = \{ C \times D \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]

Restricting \(\mathcal{B}_{X \times Y}\) to the subset \(A \times B\), the basis of the subspace topology on \(A \times B\) is

\[
\begin{aligned}
\tilde{\mathcal{B}}_{A \times B} &= \{ (C \times D) \cap (A \times B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \} \\
&= \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \},
\end{aligned}
\]

which is the same as that of the product topology on \(A \times B\). Hence, this theorem is proved.

The above process of proof can be illustrated as below.

Remark: The above two routes for generating topology on \(A \times B\) must lead to the same result, otherwise, the theory itself is inappropriately proposed. A theory must be at least self-consistent before its debut in reality.

James Munkres Topology: Theorem 16.3的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  3. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  4. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  5. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  6. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  7. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  8. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  9. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

随机推荐

  1. UVA 10618 Tango Tango Insurrection

    https://vjudge.net/problem/UVA-10618 题目 你想学着玩跳舞机.跳舞机的踏板上有4个箭头:上.下.左.右.当舞曲开始时,屏幕上会有一些箭头往上移动.当向上移动箭头与顶 ...

  2. 【C/C++】Dijkstra算法的简洁实现

    Dijkstra的实现有很多种,下面给出一种较为简洁和高效的实现,可以作为模板快速使用. 1. 使用邻接表存储图: 2. 使用标准STL的vector存储每个点的所有邻接边: 3. 使用pair记录当 ...

  3. Elasticsearch6.x和Kibana6.x的安装

    Elasticsearch6.x的安装(centos6.x下) Elasticsearch6.x目前需要至少jdk8的支持,关于如何安装jdk不在讲述.Oracle的推荐安装文档可以在Oracle的网 ...

  4. LOJ #2719. 「NOI2018」冒泡排序(组合数 + 树状数组)

    题意 给你一个长为 \(n\) 的排列 \(p\) ,问你有多少个等长的排列满足 字典序比 \(p\) 大 : 它进行冒泡排序所需要交换的次数可以取到下界,也就是令第 \(i\) 个数为 \(a_i\ ...

  5. 通过Visualizing Representations来理解Deep Learning、Neural network、以及输入样本自身的高维空间结构

    catalogue . 引言 . Neural Networks Transform Space - 神经网络内部的空间结构 . Understand the data itself by visua ...

  6. ubuntu文件搜索统计

    一.在ubuntu下如何搜索文件 1.特点:快速,但是是模糊查找,例如 找 #whereis mysql 它会把mysql,mysql.ini,mysql.*所在的目录都找出来.我一般的查找都用这条命 ...

  7. Python 各种进制转换

    #coding=gbk var=input("请输入十六进制数:") b=bin(int(var,16)) print(b[2:]) 详细请参考python自带int函数.bin函 ...

  8. /etc/profile文件被改坏导致命令不可用

    这几天在装一个软件,设置环境变量的时候,不小心把/etc/profile文件改坏了(就是没配置对),在source /etc/profile后导致所有命令都不可用了.出现如下报错: -bash: xx ...

  9. python之使用单元测试框架unittest执行自动化测试

    Python中有一个自带的单元测试框架是unittest模块,用它来做单元测试,它里面封装好了一些校验返回的结果方法和一些用例执行前的初始化操作. 单元测试框架即一堆工具的集合. 在说unittest ...

  10. IKanalyzer分词器分词并且统计词频

    <dependency> <groupId>com.janeluo</groupId> <artifactId>ikanalyzer</artif ...