Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topology on \(A \times B\) is the same as the topology \(A \times B\) inherits as a subspace of \(X \times Y\).

Comment: To prove the identity of two topologies, we can either show they mutually contain each other or prove the equivalence of their bases. Because a topological basis has smaller number of elements or cardinality than the corresponding topology, proof via basis is more efficient.

Proof: Let \(\mathcal{C}\) be the topological basis of \(X\) and \(\mathcal{D}\) be the basis of \(Y\). Because \(A \subset X\) and \(B \subset Y\), the subspace topological bases of them are \(\mathcal{B}_A = \{C \cap A \vert \forall C \in \mathcal{C} \}\) and \(\mathcal{B}_B = \{D \cap B \vert \forall D \in \mathcal{D} \}\) respectively according to Lemma 16.1.

Due to Lemma 15.1, the basis of the product topology on \(A \times B\) is

\[
\mathcal{B}_{A \times B} = \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]

Meanwhile, the basis of the product topology on \(X \times Y\) is

\[
\mathcal{B}_{X \times Y} = \{ C \times D \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]

Restricting \(\mathcal{B}_{X \times Y}\) to the subset \(A \times B\), the basis of the subspace topology on \(A \times B\) is

\[
\begin{aligned}
\tilde{\mathcal{B}}_{A \times B} &= \{ (C \times D) \cap (A \times B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \} \\
&= \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \},
\end{aligned}
\]

which is the same as that of the product topology on \(A \times B\). Hence, this theorem is proved.

The above process of proof can be illustrated as below.

Remark: The above two routes for generating topology on \(A \times B\) must lead to the same result, otherwise, the theory itself is inappropriately proposed. A theory must be at least self-consistent before its debut in reality.

James Munkres Topology: Theorem 16.3的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  3. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  4. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  5. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  6. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  7. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  8. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  9. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

随机推荐

  1. 修改host,上github

    操作如下: 1.http://ping.chinaz.com/ 搜索github.com 海外ip,其实能找到的就两个;然后再搜gist.github.com 海外ip,也是两个. 192.30.25 ...

  2. 洛谷 P3327 【[SDOI2015]约数个数和】

    前置芝士 关于这个题,你必须知道一个这样奇奇怪怪的式子啊QAQ \[d(i*j)= \sum_{x|i} \sum_{y|j}[gcd(x,y)=1] \] 留坑,先感性理解:后面那个gcd是为了去重 ...

  3. (二分查找 拓展) leetcode 69. Sqrt(x)

    Implement int sqrt(int x). Compute and return the square root of x, where x is guaranteed to be a no ...

  4. (字符串 数组 递归 双指针) leetcode 344. Reverse String

    Write a function that reverses a string. The input string is given as an array of characters char[]. ...

  5. Vue(基础八)_导航守卫(组件内的守卫)

    一.前言 主要通过一个例子演示三个钩子的作用: 1.beforeRouteEnter()                                                         ...

  6. qsort()函数详解

    一 写在开头1.1 本节内容学习C语言中的qsort()函数. 二 qsort()2.1 函数原型 void qsort( void *base, size_t nmemb, size_t size, ...

  7. Oracle使用PLSQL导入数据后中文乱码的解决方法

    新建环境变量 名:NLS_LANG 值:SIMPLIFIE DCHINESE_CHINA.ZHS16GBK 保存后重启PLSQL Developer 重新导入. 如果还是乱码,将上面8的环境变量值改为 ...

  8. react实战项目开发(2) react几个重要概念以及JSX语法

    前言 前面我们已经学习了利用官方脚手架搭建一套可以应用在生产环境下的React开发环境.那么今天这篇文章主要先了解几个react重要的概念,以及讲解本文的重要知识JSX语法 React重要概念 [思想 ...

  9. [物理学与PDEs]第2章习题10 一维理想流体力学方程组的 Lagrange 形式

    试证明: 一维理想流体力学方程组的 Lagrange 形式 (5. 22)-(5. 24) 也可写成如下形式 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p ...

  10. Codeforces 1088F(贪心+倍增)

    题目链接 题意 构造一颗树使得满足计算方法的结果最小. 思路 考虑两棵树,一棵为题目中的询问构成的树$T1$,一棵为要构造的满足最终答案的树$T2$.从$T1$点权最小的点向外构造$T2$,在$T1$ ...