James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topology on \(A \times B\) is the same as the topology \(A \times B\) inherits as a subspace of \(X \times Y\).
Comment: To prove the identity of two topologies, we can either show they mutually contain each other or prove the equivalence of their bases. Because a topological basis has smaller number of elements or cardinality than the corresponding topology, proof via basis is more efficient.
Proof: Let \(\mathcal{C}\) be the topological basis of \(X\) and \(\mathcal{D}\) be the basis of \(Y\). Because \(A \subset X\) and \(B \subset Y\), the subspace topological bases of them are \(\mathcal{B}_A = \{C \cap A \vert \forall C \in \mathcal{C} \}\) and \(\mathcal{B}_B = \{D \cap B \vert \forall D \in \mathcal{D} \}\) respectively according to Lemma 16.1.
Due to Lemma 15.1, the basis of the product topology on \(A \times B\) is
\[
\mathcal{B}_{A \times B} = \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]
Meanwhile, the basis of the product topology on \(X \times Y\) is
\[
\mathcal{B}_{X \times Y} = \{ C \times D \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]
Restricting \(\mathcal{B}_{X \times Y}\) to the subset \(A \times B\), the basis of the subspace topology on \(A \times B\) is
\[
\begin{aligned}
\tilde{\mathcal{B}}_{A \times B} &= \{ (C \times D) \cap (A \times B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \} \\
&= \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \},
\end{aligned}
\]
which is the same as that of the product topology on \(A \times B\). Hence, this theorem is proved.
The above process of proof can be illustrated as below.
Remark: The above two routes for generating topology on \(A \times B\) must lead to the same result, otherwise, the theory itself is inappropriately proposed. A theory must be at least self-consistent before its debut in reality.
James Munkres Topology: Theorem 16.3的更多相关文章
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- vue 自定义指令的使用案例
参考资料: 1. vue 自定义指令: 2. vue 自定义指令实现 v-loading: v-loading,是 element-ui 组件库中的一个用于数据加载过程中的过渡动画指令,项目中也很少需 ...
- C#嵌入动态链接库到可执行文件
C#嵌入动态链接库到可执行文件 将需要被集成的程序集放在项目的lib文件夹中,引用路径从解决方案开始,以“.”连接. 如图(解决方案名称为莫非): 核心代码: AppDomain.CurrentDom ...
- 利用zabbix api添加、删除、禁用主机
python环境配置yum -y install python-pip安装argparse模块pip install -i https://pypi.douban.com/simple/ argpar ...
- django restframework jwt
既然要来学习jwt(json web token),那么我们肯定是先要了解jwt的优势以及应用场景--跨域认证. $ pip install djangorestframework-jwt 传统coo ...
- Django练习——图书管理系统
Django图书管理系统 创建一个项目 1. django-admin startproject 图书管理 2. cmd 命令终端下创建一个app python manage.py startapp ...
- 如何取消Paypal自动付款功能
在国外在线服务消费肯定会常遇到PayPal的支付方式,有些人可能PayPal有些余额可能会用这个工具来支付,但付款后,可能服务因为不满意而退掉,但第二年却自动续约了?但明明服务已退掉,这该怎么处理呢? ...
- epoll ET(边缘触发) LT(水平触发)
EPOLL事件有两种模型: Edge Triggered (ET) 边缘触发只有数据到来,才触发,不管缓存区中是否还有数据.Level Triggered (LT) 水平触发只要有数据都会触发. 首先 ...
- Linux设备树(六 memory&chosen节点)
六 memory&chosen节点 根节点那一节我们说过,最简单的设备树也必须包含cpus节点和memory节点.memory节点用来描述硬件内存布局的.如果有多块内存,既可以通过多个memo ...
- Kubernetes集群调度器原理剖析及思考
简述 云环境或者计算仓库级别(将整个数据中心当做单个计算池)的集群管理系统通常会定义出工作负载的规范,并使用调度器将工作负载放置到集群恰当的位置.好的调度器可以让集群的工作处理更高效,同时提高资源利用 ...
- SEO学习知识
监控流量的工具 百度统计 CNZZ 51LA 谷歌分析工具 如何从平台借流量? 竞价(付费).SEO 关键词定位: 定位人:负责人 将公司的业务全部列出来 选词: 根据定位的关键词选择出我们需要优化 ...