James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topology on \(A \times B\) is the same as the topology \(A \times B\) inherits as a subspace of \(X \times Y\).
Comment: To prove the identity of two topologies, we can either show they mutually contain each other or prove the equivalence of their bases. Because a topological basis has smaller number of elements or cardinality than the corresponding topology, proof via basis is more efficient.
Proof: Let \(\mathcal{C}\) be the topological basis of \(X\) and \(\mathcal{D}\) be the basis of \(Y\). Because \(A \subset X\) and \(B \subset Y\), the subspace topological bases of them are \(\mathcal{B}_A = \{C \cap A \vert \forall C \in \mathcal{C} \}\) and \(\mathcal{B}_B = \{D \cap B \vert \forall D \in \mathcal{D} \}\) respectively according to Lemma 16.1.
Due to Lemma 15.1, the basis of the product topology on \(A \times B\) is
\[
\mathcal{B}_{A \times B} = \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]
Meanwhile, the basis of the product topology on \(X \times Y\) is
\[
\mathcal{B}_{X \times Y} = \{ C \times D \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \}.
\]
Restricting \(\mathcal{B}_{X \times Y}\) to the subset \(A \times B\), the basis of the subspace topology on \(A \times B\) is
\[
\begin{aligned}
\tilde{\mathcal{B}}_{A \times B} &= \{ (C \times D) \cap (A \times B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \} \\
&= \{ (C \cap A) \times (D \cap B) \vert \forall C \in \mathcal{C}, \forall D \in \mathcal{D} \},
\end{aligned}
\]
which is the same as that of the product topology on \(A \times B\). Hence, this theorem is proved.
The above process of proof can be illustrated as below.
Remark: The above two routes for generating topology on \(A \times B\) must lead to the same result, otherwise, the theory itself is inappropriately proposed. A theory must be at least self-consistent before its debut in reality.
James Munkres Topology: Theorem 16.3的更多相关文章
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- Linux取代ifconfig指令的ip指令
- 使用mongo-express管理mongodb数据库
前面的话 本文将详细介绍一款用nodejs开发的基于Web的mongodb数据库管理工具mongo-express 安装 首先,全局安装 mongo-express 包 npm install -g ...
- Android的LinearLayout中orientation默认值为什么是HORIZONTAL
在一个偶然(闲着无聊)的过程中,突然非常好奇为什么LinearLayout在不指定排列方向为垂直(VERTICAL)时就得是水平方向(HORIZONTAL)排列的.产生这个疑问的时候脑子里蹦出来的第一 ...
- Magento2 可配置产品解决SKU流程
选择可配置产品: 填写必填信息与库存 创建配置 执行四步后完成创建:4.1:选择需要的规格属性: 4.2:选择组合需要的属性值:4.3:根据您的选择,将创建3个新产品.使用此步骤自定义新产品的图像和价 ...
- zabbix误报交换机重启
交换机的sysUpTime是由一个32-bit的counter来计数的,单位是0.01秒,所以最大时间为496天,过了496天就溢出,变成0,然后又重新计算时间,所以zabbix误报. snmpwal ...
- 帝国cms更新报错解决办法
帝国cms更新,经常会报以下的错误: PHP Warning: array_merge(): Argument #2 is not an array in D:\wwwroot\www.536831 ...
- nginx的信号量
一.官方文档 https://www.nginx.com/resources/wiki/start/topics/tutorials/commandline/ 二.nginx进程说明 一般在nginx ...
- (转)如何阅读OpenStack源码
1 关于该项目 本项目使用在线绘图工具web sequencediagrams完成,目标是图形化OpenStack的所有操作流程,通过操作序列图能快速学习Openstack的工作原理,理清各个组件的关 ...
- 验证性控件的使用--验证两个文本框至少有一个不为空CustomValidator
转:http://blog.163.com/zhaowencong_2010/blog/static/20402815220122103155643/ 有时候我们在注册一个帐号时要求我们留下电话号码, ...
- 第二节:深入剖析Thread的五大方法、数据槽、内存栅栏。
一. Thread及其五大方法 Thread是.Net最早的多线程处理方式,它出现在.Net1.0时代,虽然现在已逐渐被微软所抛弃,微软强烈推荐使用Task(后面章节介绍),但从多线程完整性的角度上来 ...