Paper Reading——LEMNA:Explaining Deep Learning based Security Applications
Motivation:
The lack of transparency of the deep learning models creates key barriers to establishing trusts to the model or effectively troubleshooting classification errors
Common methods on non-security applications:
forward propagation / back propagation / under a blackbox setting
the basic idea is to approximate the local decision boundary using a linear model to infer the important features.
Insights:
A mixture regression model : can approximate both linear and non-linear decision boundaries
Fused Lasso: a panalty term commonly used for capturing frature dependency.
By adding fused lasso to the learning process, the mixture regression model can take features as a group and thus capture the dependency between adjacent features.
Evaluations:
classifying PDF malware: trained on 10000 PDF files
detecting the function start to reverse-engineer binary code.
Innovation:
Under a black-box setting :
Give an input data instance x and a classifier such as an RNN, identify a small set of features that have key contributions to the classification of x.
Paper Reading——LEMNA:Explaining Deep Learning based Security Applications的更多相关文章
- 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
随机推荐
- java--序列化和反序列化
一.序列化 java序列化的过程是把对象转换为字节序列的过程 序列化的两种用途: 1)把对象的字节序列永久保存大搜硬盘上,通常存放到一个文件中 2)在网络上传送对象的字节序列 jdk中的序列化API: ...
- memcached单机或热备的安装部署
一.部署准备 1.安装Java 不建议使用系统默认Open JDK版本,需要手工另行安装.JDK版本建议为1.7+,若Java已安装完毕,则无需重复安装. 安装过程如下: (1)获取JDK安装包: ( ...
- WPF 10天修炼 第五天- 内容控件
WPF内容控件 在WPF中,所有呈现在用户界面上的对象都称为用户界面元素.但是只有派生自System.Windows.Controls.Control类的对象才称为控件.内容控件通常是指具有Conte ...
- form表单中button按钮返回上一页解决办法
解决Form中button按钮不好用的问题解决办法. 方法一: 1.在Form表单标签中国增加一个属性,如下图,红框处 2.返回按钮样式 3.onclick方法需要跳转的页面,遮挡处为需要返回的页面 ...
- h1-h3使用
一个页面也就只允许出现一个h1标签.内容页文章的标题,是seo中使用最多的地方,基本的文章页面标题都是使用h1标签.一.<h1>用来修饰网页的主标题,一般是网页的标题 ,文章标题,< ...
- el-table中单数行与双数行设置不同的背景颜色
<el-table :cell-style='cellStyle' :data="tableData" style="width: 100%;" > ...
- mysql_config not found和error: command 'gcc' failed with exit status 1
要想使python可以操作mysql 就需要MySQL-python驱动,它是python 操作mysql必不可少的模块. 下载地址:https://pypi.python.org/pypi/MySQ ...
- 【玩转开源】基于Docker搭建Bug管理系统 MantisBT
环境Ubuntu18.04 + Docker 1. Docker Hub 链接:https://hub.docker.com/r/vimagick/mantisbt 这里直接使用docker命令的方式 ...
- java思维导图
https://www.edrawsoft.cn/viewer/public/s/eeca7704686971
- SignalR具有自签名SSL和自主机
SignalR具有自签名SSL和自主机 在研究中试过我的运气,但到目前为止还没有快乐. 我想将SignalR javascript客户端连接到自签名的SignalR Windows服务绑定到自签名 ...