.net中使用 道格拉斯-普特 抽希轨迹点
Douglas一Peukcer算法由D.Douglas和T.Peueker于1973年提出,简称D一P算法,是目前公认的线状要素化简经典算法。现有的线化简算法中,有相当一部分都是在该算法基础上进行改进产生的。它的优点是具有平移和旋转不变性,给定曲线与阂值后,抽样结果一定。
思路:对每一条曲线的首末点虚连一条直线,求所有点与直线的距离,并找出最大距离值dmax ,用dmax与限差D相比:若dmax < D ,这条曲线上的中间点全部舍去;若dmax ≥D ,保留dmax 对应的坐标点,并以该点为界,把曲线分为两部分,对这两部分重复使用该方法。
GpsPositionDto
public class GpsPositionDto
{ /// <summary>
/// 转换后的纬度
/// </summary>
public decimal GpsWebLng { get; set; }
/// <summary>
/// 转换后的经度
/// </summary>
public decimal GpsWebLat { get; set; } /// <summary>
/// 时间
/// </summary>
public DateTime Gpstime { get; set; }
//其他参数自己加
}
/// <summary>
/// 道格拉斯-普特
/// </summary>
public class DouglasPeucker
{
/// <summary>
/// 距离
/// </summary>
/// <param name="point1"></param>
/// <param name="point2"></param>
/// <returns></returns>
public static double CalculationDistance(GpsPositionDto point1, GpsPositionDto point2)
{
var lat1 = (double)point1.GpsWebLat;
var lat2 = (double)point2.GpsWebLat;
var lng1 = (double)point1.GpsWebLng;
var lng2 = (double)point2.GpsWebLng;
var radLat1 = lat1 * Math.PI / 180.0;
var radLat2 = lat2 * Math.PI / 180.0;
var a = radLat1 - radLat2;
var b = (lng1 * Math.PI / 180.0) - (lng2 * Math.PI / 180.0);
var s = 2 * Math.Asin(Math.Sqrt(Math.Pow(Math.Sin(a / 2), 2)
+ Math.Cos(radLat1) * Math.Cos(radLat2) * Math.Pow(Math.Sin(b / 2), 2)));
return s * 6370996.81;
}
/// <summary>
/// 直线距离
/// </summary>
/// <param name="start"></param>
/// <param name="end"></param>
/// <param name="center"></param>
/// <returns></returns>
public static double DistToSegment(GpsPositionDto start, GpsPositionDto end, GpsPositionDto center)
{
var a = Math.Abs(CalculationDistance(start, end));
var b = Math.Abs(CalculationDistance(start, center));
var c = Math.Abs(CalculationDistance(end, center));
var p = (a + b + c) / 2.0;
var s = Math.Sqrt(Math.Abs(p * (p - a) * (p - b) * (p - c)));
return s * 2.0 / a;
}
/// <summary>
/// 递归方式压缩轨迹
/// </summary>
/// <param name="coordinate"></param>
/// <param name="result"></param>
/// <param name="start"></param>
/// <param name="end"></param>
/// <param name="dMax"></param>
/// <returns></returns>
public static IList<GpsPositionDto> CompressLine(IList<GpsPositionDto> coordinate, IList<GpsPositionDto> result, int start, int end, double dMax)
{
if (start < end)
{
var maxDist = 0D;
var currentIndex = 0;
var startPoint = coordinate[start];
var endPoint = coordinate[end];
for (var i = start + 1; i < end; i++)
{
var currentDist = DistToSegment(startPoint, endPoint, coordinate[i]);
if (currentDist > maxDist)
{
maxDist = currentDist;
currentIndex = i;
}
}
if (maxDist >= dMax)
{
//将当前点加入到过滤数组中
result.Add(coordinate[currentIndex]);
//将原来的线段以当前点为中心拆成两段,分别进行递归处理
CompressLine(coordinate, result, start, currentIndex, dMax);
CompressLine(coordinate, result, currentIndex, end, dMax);
}
}
return result;
} /// <summary>
/// 抽希
/// </summary>
/// <param name="coordinate">原始轨迹Array</param>
/// <param name="dMax">允许最大距离误差</param>
/// <returns>抽稀后的轨迹</returns>
public static IList<GpsPositionDto> Dilution(IList<GpsPositionDto> coordinate, double dMax = 10)
{
if (!(coordinate.Count > 2))
{
return null;
}
var result = CompressLine(coordinate, new List<GpsPositionDto>(), 0, coordinate.Count - 1, dMax);
result.Add(coordinate[0]);
result.Add(coordinate[coordinate.Count - 1]);
//排序
var resultLatLng = result.OrderBy(s => s.Gpstime).ToList();
return resultLatLng;
}
}
.net中使用 道格拉斯-普特 抽希轨迹点的更多相关文章
- GIS矢量数据化简:一种改进的道格拉斯-普克算法以及C++实现
GIS领域的同志都知道,传统的道格拉斯-普克算法都是递归实现.然而有时候递归的层次太深的话会出现栈溢出的情况.在此,介绍一种非递归的算法. 要将递归算法改为非递归算法,一般情况下分为两种场景.第一种是 ...
- OpenCV 学习笔记03 凸包convexHull、道格拉斯-普克算法Douglas-Peucker algorithm、approxPloyDP 函数
凸形状内部的任意两点的连线都应该在形状里面. 1 道格拉斯-普克算法 Douglas-Peucker algorithm 这个算法在其他文章中讲述的非常详细,此处就详细撰述. 下图是引用维基百科的.ε ...
- 道格拉斯-普克算法(JavaScript实现)
需求: 有时候当移动速度很慢,GPS定位的轨迹点就非常的多,这时候为了缩减数据量,需要将不突出的点去掉. 思路: (1) 在曲线首尾两点间虚连一条直线,求出其余各点到该直线的距离. (2)选其最大者与 ...
- WebGIS中使用ZRender实现前端动态播放轨迹特效的方案
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 项目中需要在地图上以时间轴方式播放人员.车辆在地图上的历史行进 ...
- 217。数据中是否有重复元素(哈希表/set简法)
给定一个整数数组,判断是否存在重复元素. 如果任意一值在数组中出现至少两次,函数返回 true .如果数组中每个元素都不相同,则返回 false . 示例 1: 输入: [1,2,3,1] 输出: t ...
- 道格拉斯—普克(Douglas一Peukcer)节点抽稀算法
Douglas一Peukcer算法由D.Douglas和T.Peueker于1973年提出,简称D一P算法,是眼下公认的线状要素化简经典算法.现有的线化简算法中,有相当一部分都是在该算法基础上进行改进 ...
- 利用道格拉斯·普客法(DP法)压缩矢量多边形(C++)
1.算法描述 经典的Douglas-Peucker算法(简称DP法)描述如下: (1)在曲线首尾两点A,B之间连接一条直线AB,该直线为曲线的弦: (2)得到曲线上离该直线段距离最大的点C,计算其与A ...
- 实习小记-python中可哈希对象是个啥?what is hashable object in python?
废话不多说直接祭上python3.3x的文档:(原文链接) object.__hash__(self) Called by built-in function hash() and for opera ...
- Android中使用JNI获得APK签名的哈希值
原地址:http://blog.csdn.net/i5suoi/article/details/19036975 最近在研究android应用中的安全问题,貌似只有将核心代码写到JNI底层才是最安全的 ...
随机推荐
- iOS 推荐几篇关于Objective-c 动态语言的文章
http://www.cnblogs.com/Mr-Lin/p/5771969.html https://onevcat.com/2012/04/objective-c-runtime/ 我摘抄几句比 ...
- cf55D 数位dp记忆化搜索+状态离散
/* 漂亮数定义:可以整除任意数位上的数 求出区间[l,r]之间的漂亮数个数 因为 dp[i][j][k]:i位前模lcm的值是j,i位前lcm是k的漂亮数个数 */ #include<bits ...
- 配置php5.6.4 + Apache2.4.10
一.下载并安装apache 下载地址:www.apachelounge.com 解压后:执行以下命令: #httpd.exe –k install #httpd.exe -k start 在执行过程中 ...
- postgre dinstinct on()的使用
意思是DISTINCT ON ( expression [, …] )把记录根据[, …]的值进行分组,分组之后仅返回每一组的第一行. 需要注意的是,如果你不指定ORDER BY子句,返回的第一条的不 ...
- Redis docker安装和主要功能
docker安装redis 启动docker,下载redis镜像:docker pull redis 然后运行镜像并发布端口6379: 然后运行redis-cli(这是Redis的一个命令行管理工具) ...
- python下载大文件
1. wget def download_big_file_with_wget(url, target_file_name): """ 使用wget下载大文件 Note: ...
- seata-server安装、运行(ubuntu)
seata-server为seata中的事务协调器. seata的wiki https://github.com/seata/seata/wiki/Home_Chinese 一.下载并安装 wget ...
- eclipse安装Spring的具体步骤
1.下载spring 官网下载需要jar包放在lib中 本人分享百度云jar 链接:https://pan.baidu.com/s/1iEMwBbTTCxuCNOEdprlGhg 提取码:e7tg 2 ...
- SQL中DATENAME函数的用法
在SQL数据库中有多种函数,下面就将为您介绍其中的DATENAME函数的用法,供您参考,希望对您学习SQL中函数的用法能有所帮助. 在SQL数据库中,DATENAME函数的作用是是从日期中提取指定部分 ...
- 【BZOJ4842】[Neerc2016]Delight for a Cat 线性规划+费用流
[BZOJ4842][Neerc2016]Delight for a Cat Description ls是一个特别堕落的小朋友,对于n个连续的小时,他将要么睡觉要么打隔膜,一个小时内他不能既睡觉也打 ...