【BZOJ】3437: 小P的牧场
题意
n个点,需要再一些点建立控制站,如果在第\(i\)个建站,贡献为\(a[i]\)。假设前一个站为\(j<i\),则\([j+1, i]\)的点的贡献是\(\sum_{k=j+1}^{i} (i-k) b[k]\)。同时要求第\(n\)个点建站。求最小贡献。(\(n \le 10^6\))
题解
设\(d(i)\)表示前\(i\)个且在第\(i\)个牧场建控制站的最小贡献
则
\]
则\(ans = d(n)\)
设\(cost(i, j)\)表示\([i, j]\)由\(j\)控制的费用
$$
\begin{align}
cost(i, j) & = \sum_{k=i}^{j} (j-k)b[k] \\
& = j \sum_{k=i}^{j} b[k] - \sum_{k=i}^{j} kb[k] \\
\end{align}
$$
令
\(s_0(n) = \sum_{i=1}^{n} b[i]\)
\(s_1(n) = \sum_{i=1}^{n} ib[i]\)
则
\]
则
$$
\begin{align}
d(i) & = min( d(j) + i(s_0(i) - s_0(j)) - s_1(i) + s_1(j) ) \\
& = min( d(j) + s_1(j) - is_0(j) ) + is_0(i) - s_1(i) + a[i] \\
\end{align}
$$
设决策\(j\)比\(k\)优且\(s_0(j) \le s_0(k)\)
$$
\begin{align}
d(j) + s_1(j) - i s_0(j) & \le d(k) + s_1(k) - i s_0(k) \\
d(j) + s_1(j) - ( d(k) + s_1(k) ) & \le i (s_0(j) - s_0(k)) \\
\frac{d(j) + s_1(j) - ( d(k) + s_1(k) )}{ s_0(j) - s_0(k)} & \ge i \\
\end{align}
$$
由于\(i\)递增,\(s_0(i)\)随\(i\)递增而递增,因此我们用单调队列优化
#include <bits/stdc++.h>
using namespace std;
const int N=1000005;
typedef long long ll;
int a[N], q[N];
ll s0[N], s1[N], d[N];
inline ll Y(int j, int k) {
return d[j]+s1[j]-d[k]-s1[k];
}
inline ll X(int j, int k) {
return (ll)s0[j]-s0[k];
}
int main() {
int n;
scanf("%d", &n);
for(int i=1; i<=n; ++i) {
scanf("%d", &a[i]);
}
for(int i=1; i<=n; ++i) {
scanf("%lld", &s0[i]);
s1[i]=s0[i]*i;
s0[i]+=s0[i-1];
s1[i]+=s1[i-1];
}
int fr=0, ta=1;
q[0]=0;
for(int i=1; i<=n; ++i) {
while(ta-fr>=2 && Y(q[fr], q[fr+1])>(ll)i*X(q[fr], q[fr+1])) {
++fr;
}
int j=q[fr];
d[i]=d[j]+s1[j]-s0[j]*i+s0[i]*i-s1[i]+a[i];
while(ta-fr>=2 && Y(q[ta-2], i)*X(q[ta-2], q[ta-1])<=Y(q[ta-2], q[ta-1])*X(q[ta-2], i)) {
--ta;
}
q[ta++]=i;
}
printf("%lld\n", d[n]);
return 0;
}
【BZOJ】3437: 小P的牧场的更多相关文章
- BZOJ 3437: 小P的牧场 斜率优化DP
3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...
- bzoj 3437: 小P的牧场 -- 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...
- BZOJ 3437 小P的牧场(斜率优化DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3437 [题目大意] n个牧场排成一行,需要在某些牧场上面建立控制站, 每个牧场上只能建 ...
- BZOJ 3437: 小P的牧场
传送门 显然考虑 $dp$,设 $f[i]$ 表示前 $i$ 个牧场都被控制的最小代价 那么枚举所有 $j<i$ ,$f[i]=f[j]+val[i][j]+A[i]$ $val[i][j]$ ...
- bzoj 3437: 小P的牧场【斜率优化】
emmm妹想到要倒着推 先假设只在n建一个控制站,这样的费用是\( \sum_{i=1}^{n} b[i]*(n-i) \)的 然后设f[i]为在i到n键控制站,并且i一定建一个,能最多节省下的费用, ...
- bzoj 3437 小p的农场
bzoj 3437 小p的农场 思路 \(f[i]=min(f[j]+\sum\limits_{k=j+1}^{i}{b[k]*(i-k)}+a[i])\) \(f[i]=min(f[j]+\sum\ ...
- 3437: 小P的牧场
3437: 小P的牧场 思路 斜率优化. dp[i]表示到第i个点(第i个点按控制台)的最小代价. 代码 #include<cstdio> #include<iostream> ...
- 【BZOJ】【3437】小P的牧场
DP/斜率优化 斜率优化基本题……等等,好像就没啥变化啊= = 嗯目测这题跟仓库建设差不多?写题的时候倒是没想这么多……直接推了公式. $$f[i]=min\{f[j]+cal(j,i)+a[i]\} ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
随机推荐
- Web编程基础--HTML、CSS、JavaScript 学习之课程作业“仿360极速浏览器新标签页”
Web编程基础--HTML.CSS.JavaScript 学习之课程作业"仿360极速浏览器新标签页" 背景: 作为一个中专网站建设出身,之前总是做静态的HTML+CSS+DIV没 ...
- 1JavaEE应用简介----青软S2SH(笔记)
这本书主要是讲解Struts2,spring,Hibernate框架的, 因为工作中用的较多的是SpringMVC,Struts2用的较少,所以想系统学习一下,就买了这本书. 这本书是青软的,虽然是培 ...
- mac 上的 python
1.mac 上的 python 自己感觉很乱 1.额外安装的 自带的 python27-apple /System/Library/Frameworks/Python.framework/Versio ...
- PHP中curl的CURLOPT_POSTFIELDS参数使用细节
CURL确实是一个不错的好工具,不仅在PHP中还是其他的操作系统中,都是一个非常好用的.但是如果你有些参数没有用好的话,那可能会得不到自己理想中的结果. 在通常情况下,我们使用 CURL 来提交 PO ...
- 为 MySQL 设置默认字符集(UTF-8)避免产生乱码
环境:Windows 7+Wamp Server+MySQL 5.7.9 查看MySQL默认编码: SHOW VARIABLES LIKE 'character%' character_set_cli ...
- Qt StyleSheet皮肤css源码
使用方式如下 //设置皮肤样式 static void SetStyle(const QString &styleName) { QFile file(QString(":/imag ...
- JavaScript "自"运行-setInertval()和setTimeout()理解
setInterval()和clearInterval() var result = "Y"; function onOk() { var tid = setInterval(fu ...
- nodejs开发指南demo
由于手上拿的教程是2012年出版的,到如今已历经N个版本,所以在写代码时报过一堆错.这是解决错误后的版本. 源码下载
- java基本算法之冒泡排序
冒泡排序:是一种较简单的排序算法.它会遍历若干次要排序的数列,每次遍历时,它都会从前往后依次的比较相邻两个数的大小:如果前者比后者大,则交换它们的位置.这样,一次遍历之后,最大的元素就在数列的末尾! ...
- 错误:The method replace(int, Fragment) in the type FragmentTransaction is not applicable for the arguments (int, MyFragment)
Fragment newfragment =new MyFragment();fragmentTransaction.replace(R.layout.activity_main,newfragmen ...