[NOIP2012]国王游戏 题解
题目大意:
n个人排成一排,排头固定,其他可以变。每一个人左右手都有一个整数,一个人的分数为他所有前面的人左手上的数的乘积除以他右手上的数(向下取整),求在整列中最大分数的最小值。
思路:
首先,一切序列都可以通过若干次相邻的人的交换实现转换,而相邻的人的交换只会影响这两个人的分数。
假设相邻的两人为i,i+1,则令a[i]*b[i]<=a[i+1]*b[i+1],设i之前的和为S,则交换前的ans1=max{S/b[i],S*a[i]/b[i+1]},交换后ans2=max{S/b[i+1],S*a[i+1]/b[i]}。∵a[i],a[i+1],b[i],b[i+1],S均为正整数,∴S*a[i]>=S,∴S*a[i]/b[i+1]>=S/b[i+1]。
同理:S*a[i+1]/b[i]>=S/b[i]。
又∵a[i]*b[i]<=a[i+1]*b[i+1]且a[i],a[i+1],b[i],b[i+1],S均为正整数,∴S*a[i]*b[i]<=S*a[i+1]*b[i+1],∴S*a[i]/b[i+1]<=S*a[i+1]/b[i],∴ans2>=ans1,∴要使最终ans最小则要使每个人左右手的数的乘积从小到大排列,在计算答案。
由于数据较大,需要用到高精度(压位),乘法没什么问题,除法注意边界条件!
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int M=,N=;
int n,i,l,p,len,a[M],b[M],c[M],s[M],d[M],z[M],id[M],ans[M]; bool cmp(int x,int y) { return s[x]<s[y]; } void cheng(int x)
{
int i,t=;
for (i=;i<=len;++i)
{
c[i]=t+c[i]*x;
t=c[i]/N;
c[i]=c[i]%N;
}
if (t) c[++len]=t;
} bool pd()
{
if (l>p) return ;
for (int i=;i<=l;i++)
if (ans[i]<d[i]) return ;
return ;
} void chu(int y)
{
int i=len,t,x=z[len];
for (l=;i;)
{
if (i>) { if (x<y) x=x*N+z[--i]; } else break;
d[++l]=x/y;x=x%y;
}
if (x>=y) d[++l]=x/y;
if (pd()) for (p=l,i=;i<=l;i++) ans[i]=d[i];
} int main()
{
scanf("%d%d%d",&n,&a[],&b[]);
for (i=;i<=n;i++) scanf("%d%d",&a[i],&b[i]),s[i]=a[i]*b[i],id[i]=i;
sort(id+,id++n,cmp); c[len=]=a[];
for (i=;i<=n;i++) memcpy(z,c,sizeof c),chu(b[id[i]]),cheng(a[id[i]]);
printf("%d",ans[]);
for (i=;i<=p;i++)//printf("%05d",ans[i]);
if (ans[i]>) printf("%d",ans[i]);
else if (ans[i]>) printf("0%d",ans[i]);
else if (ans[i]>) printf("00%d",ans[i]);
else if (ans[i]>) printf("000%d",ans[i]);
else printf("0000%d",ans[i]);
return ;
}
[NOIP2012]国王游戏 题解的更多相关文章
- luoguP1080 国王游戏 题解(NOIP2012)(贪心+高精)
luoguP1080 国王游戏 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include& ...
- 继续写高精!noip2012国王游戏。。。
国王游戏 题目描述: 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排成一排,国王 ...
- NOIP2012 国王游戏
2国王游戏 (game.cpp/c/pas) [问题描述] 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数 ...
- [noip2012]国王游戏<贪心+高精度>
题目链接: https://vijos.org/p/1779 https://www.luogu.org/problem/show?pid=1080 http://codevs.cn/problem/ ...
- NOIP2012国王游戏(60分题解)
题目描述 恰逢 H国国庆,国王邀请n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排成一排,国王站在队伍的最前面 ...
- NOIP2012国王游戏
题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右 手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排 成一排,国王站在 ...
- [NOIp2012] 国王游戏(排序 + 贪心 + 高精度)
题意 给你两个长为 \(n+1\) 的数组 \(a,b\) ,你需要定义一个顺序 \(p\) (\(p_0\) 永远为 \(0\)) 能够最小化 \[ \max_{i=1}^{n} \frac{\pr ...
- 洛谷P1080(NOIP2012)国王游戏——贪心排序与高精度
题目:https://www.luogu.org/problemnew/show/P1080 排序方法的确定,只需任取两个人,通过比较与推导,可以得出ai*bi小的人排在前面: 高精度写的时候犯了些细 ...
- Luogu P1080 [NOIP2012]国王游戏
题目 按\(a_i*b_i\)升序排序即可. 证明考虑交换法. 对于排序后相邻的两个人\(i,j(a_ib_i\le a_jb_j)\),设前面的总的积为\(s\),则当前答案为\(\max(\fra ...
随机推荐
- linux中ldconfig的使用介绍
linux中ldconfig的使用介绍 ldconfig是一个动态链接库管理命令,其目的为了让动态链接库为系统所共享. ldconfig的主要用途: 默认搜寻/lilb和/usr/lib,以及配置文件 ...
- session生命周期(一)
Session存储在服务器端,一般为了防止在服务器的内存中(为了高速存取),Session在用户访问第一次访问服务器时创建,需要注意只有访问JSP.Servlet等程序时才会创建Session,只访问 ...
- 【转载】使用Pandas进行数据匹配
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式 ...
- LYDSY热身赛 escape
Description 给出数字N(1<=N<=10000),X(1<=x<=1000),Y(1<=Y<=1000),代表有N个敌人分布一个X行Y列的矩阵上矩形的行 ...
- Python基础知识(一)
- [Math] 常见的几种最优化方法
我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等.最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素 ...
- 解决table不能换行的问题与CSS之自动换行总结
table不能换行问题 一般是:一行里面全是数字或是字母或者结尾有多个感叹号而导致 table不能换行,中文默认的会自动换行的,字母不能换行问题:style="table-layout:fi ...
- JavaScript深入浅出5-数组
慕课网教程视频地址:Javascript深入浅出 数组:值的有序集合 创建数组:字面量,构造器new array() 数组的读写:push() 尾部加入新元素 unshift() 头部加入新元素 po ...
- Python里*arg 和**kwargs的作用
Hi,伙计们.我发现Python新手们在理解*args和**kwargs这两个魔法变量时都有些困难.他们到底是什么?首先,我先告诉大家一个事实,完整地写*args和**kwargs是不必要的,我们可以 ...
- at 常用命令
以debian 6.0.1 为例: 服务开启关闭: Usage: /etc/init.d/atd {start|stop|restart|force-reload|status} 设置一次计划任务(a ...