tarjan算法-解决有向图中求强连通分量的利器
小引
看到这个名词-tarjan,大家首先想到的肯定是又是一个以外国人名字命名的算法。说实话真的是很佩服那些算法大牛们,佩服得简直是五体投地啊。今天就遇到一道与求解有向图中强连通分量的问题,我的思路就是遍历图中的每一个点,然后进行深度遍历,看最后能否回归到这个点上。如果可以回归,那么这个点肯定在一个强连通分量上。可是最后想着想着就乱了......
没办法,自己low啊,就百度了求有向图中强连通分量的算法,于是乎tarjan算法出现在搜索结果上。
下面说一下,tarjan算法用到的一些图的概念。
强连通图、极大强连通子图、强连通分量
我们知道,在有向图G中,如果任意两个顶点都是连通的(所谓连通就是两个顶点都能互相到达),那么这个图就是强连通图。非强连通图的极大强连通子图,被称为强连通分量。
那么什么是极大强连通子图呢?
举个例子帮助理解一下:例如下面图一所示,其中子图{1,2,3,5}就是一个极大强连通子图,子图{4}也是一个极大强连通子图。
为什么会这样呢?对于“极大”的理解,就是在一个局部子图中不能再大。就像是数学中的求一个函数中的极大值和极小值一样,例如求函数f(x)的极大值和极小值,变量x可以有不同的区间,所以在x的不同区间内就会有不同的极大值或极小值。
ok,我们看一下,首先这个有向图是一个非连通的,对于子图{4}而言,其自身可以到达自身,那么{4}是连通的,如果在点集{1,2,3,5}增加任何点,最后形成的图却是不连通的。所以说子图{4}是原图G的一个极大强连通子图。那么对于子图{1,2,3,5}的理解也是一样的。
ok,对于tarjan涉及的基础概念到此就介绍结束。下面正式的讲一下tarjan算法。
tarjan算法
tarjan算法的基础就是深度优先搜索-DFS。tarjan算法需要两个数组进行辅佐,即low数组和dfn数组。dfn数组记录搜索到该点时的时间(可以理解为该点被搜索的序号),low数组是一个标记数组,表示该点或者以这个点为根的子树能够追溯到最早的栈中节点的次序。
tarjan算法的操作原理
tarjan算法基于dfs算法,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。也就是说强连通分量一定是有向图的某个深度优先搜索生成树。
用low值记录点u所在强连通子图对应的搜索子树的根节点的dfs值。该子树中的元素在栈中一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。
强连通分量是由若干个环组成,所以当有环形成时,我们将这一条路径的low值统一,即这条路径上的所有点属于同一个强连通分量。
如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)一直到栈顶的所有元素组成一个强连通分量。
tarjan算法的规则
数组初始化:当首次搜索到点u时,dfn和low数组的值都为到该点的时间。
堆栈:每遍历到一个未被标记的点,将它入栈。
当点u可以到达点v时,如果点v不在栈中,那么low[u] = min{low[u],low[v]};如果点v在栈中,那么low[u] = min{low[u],dfn[v]}。
每当搜索到一个点并经过以上步骤后,其low值等于dfn值,则将它以及在它之上的元素弹出栈。这些出栈元素组成一个强连通分量。
继续搜索(因为有向图可能有多个连通子图组成,而这些子图没有交集),直到所有点被遍历。
tarjan算法演示
下面给出一个大牛写的tarjan算法演示,很好,将tarjan算法的操作原理形象地表现了出来,可以很好地理解整个算法的执行过程。
从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。
返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。
返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。
继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。
至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。
可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。
求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。
求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。
附源码
#include <iostream>
#include <stack>
using namespace std; #define MAX_VERTEX_SIZE 10001
struct EdgeNode{
int vertex;
EdgeNode *nextArc;
}; struct VerTexNode{
EdgeNode* firstArc;
}; struct Graph{
int n,e;
VerTexNode vNode[MAX_VERTEX_SIZE];
}; int time = ;
int low[MAX_VERTEX_SIZE];
int dfn[MAX_VERTEX_SIZE];
int visited[MAX_VERTEX_SIZE];
int inStack[MAX_VERTEX_SIZE];
stack<int> st;
Graph graph; void initeGraph(int n,int m)
{
for(int i = ;i<=n;i++)
{
graph.vNode[i].firstArc = NULL;
}
graph.n = n;
graph.e = m; } //头插法建立图
void creatGraph(int s,int v)
{
EdgeNode *edgeNode = new EdgeNode;
edgeNode->vertex = v;
edgeNode->nextArc = graph.vNode[s].firstArc;
graph.vNode[s].firstArc = edgeNode;
} int min(int a,int b)
{
if(a>b)
return b;
else
return a;
} void trajan(int u)
{
dfn[u] = low[u] = time++;
st.push(u);
visited[u] = ;
inStack[u] = ;
EdgeNode *edgePtr = graph.vNode[u].firstArc;
while(edgePtr !=NULL)
{
int v = edgePtr->vertex;
if(visited[v] == )
{
trajan(v);
low[u] = min(low[u],low[v]);
}
else
{
low[u] = min(low[u],dfn[v]);
}
edgePtr = edgePtr->nextArc;
} if(dfn[u] == low[u])
{
int vtx;
cout<<"set is: ";
do{
vtx = st.top();
st.pop();
inStack[vtx] = ;//表示已经出栈
cout<<vtx<<' ';
}while(vtx !=u );
} } int main()
{
int n,m;
int s,a;
cin>>n>>m;
initeGraph(n,m);
for(int i = ;i<=n;i++)
{
visited[i] = ;
inStack[i] = ;
dfn[i] = ;
low[i] = ;
} for(int j = ;j<=m;j++)
{
cin>>s>>a;
creatGraph(s,a);
} for(int i =;i<=n;i++)
if(visited[i] == )
trajan(i);
return ;
}
tarjan算法-解决有向图中求强连通分量的利器的更多相关文章
- Tarjan算法打包总结(求强连通分量、割点和Tarjan-LCA)
目录 Tarjan打包总结(求强连通分量.割点和Tarjan-LCA) 强连通分量&缩点 原理 伪代码 板子(C++) 割点 原理 伪代码 最近公共祖先(LCA) 原理 伪代码 板子 Tarj ...
- tarjan算法+缩点:求强连通分量 POJ 2186
强连通分量:1309. [HAOI2006]受欢迎的牛 ★★ 输入文件:cow.in 输出文件:cow.out 简单对比时间限制:1 s 内存限制:128 MB [题目描述] 每一头牛 ...
- TarJan 算法求解有向连通图强连通分量
[有向图强连通分量] 在有向图G中,如果两个 顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的 ...
- [学习笔记] Tarjan算法求强连通分量
今天,我们要探讨的就是--Tarjan算法. Tarjan算法的主要作用便是求一张无向图中的强连通分量,并且用它缩点,把原本一个杂乱无章的有向图转化为一张DAG(有向无环图),以便解决之后的问题. 首 ...
- Tarjan 算法求 LCA / Tarjan 算法求强连通分量
[时光蒸汽喵带你做专题]最近公共祖先 LCA (Lowest Common Ancestors)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili tarjan LCA - YouTube Tarj ...
- 求强连通分量模板(tarjan算法)
关于如何求强连通分量的知识请戳 https://www.byvoid.com/blog/scc-tarjan/ void DFS(int x) { dfn[x]=lowlink[x]=++dfn_cl ...
- kosaraju算法求强连通分量
什么是强连通分量?在这之前先定义一个强连通性(strong connectivity)的概念:有向图中,如果一个顶点s到t有一条路径,t到s也有一条路径,即s与t互相可达,那么我们说s与t是强连通的. ...
- poj 2186 tarjan求强连通分量
蕾姐讲过的例题..玩了两天后才想起来做 貌似省赛之后确实变得好懒了...再努力两天就可以去北京玩了! 顺便借这个题记录一下求强连通分量的算法 1 只需要一次dfs 依靠stack来实现的tarjan算 ...
- tarjan求强连通分量+缩点+割点以及一些证明
“tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄> 自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...
随机推荐
- JAX-RS(REST Web Services)2.0 can not be installed: One or more constraints have not been satisfied
eclipse出错: JAX-RS(REST Web Services)2.0 can not be installed: One or more constraints have not been ...
- activiti自己定义流程之Spring整合activiti-modeler实例(一):环境搭建
项目中须要整合activiti-modeler自己定义流程,找了非常多资料后,最终成功的跳转到activiti-modeler流程设计界面.下面是记录: 一.整合基础:eclipse4.4.1.tom ...
- 解决Linux(ubuntu),windows双系统重装后恢复开机选单
1 重装ubuntu后恢复开机选单十分简单.直接更新grub就能够了: sudo update-grub 2 重装windows后显得麻烦一点.需用u盘写入ubuntu镜像重新启动使电脑从u盘启动, ...
- iOS之Sqlite3封装
一.代码下载 代码下载地址 二.实例效果展示 imageMogr2/auto-orient/strip%7CimageView2/2/w/1240" alt="效果图二.png&q ...
- vim 学习日志(6):分屏 sp,vsp,分屏移动
Vim的分屏功能 本篇文章主要教你如何使用 Vim 分屏功能. 分屏启动Vim 使用大写的O参数来垂直分屏. vim -On file1 file2 ... 使用小写的o参数来水平分屏. vim -o ...
- Alluxio 内存存储系统部署
一.文件下载和解压 1)下载地址:http://www.alluxio.org/download 2) 解压命令如下: $ wget http://alluxio.org/downloads/file ...
- contextmenu="supermenu" 属性的应用 右键菜单打开和保存功能
<div ng-class="{'chat-dialog-news-mine':{{item.isOwn}},'chat-dialog-news-other':{{!item.isOw ...
- git使用教程&&问题列表
git教程[转] http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 git push ...
- J2EE的13个规范总结
转载自:http://blog.csdn.net/zhuanzhe117/article/details/38763483 什么是J2EE? 在企业级应用中,都有一些通用企业需求模块,如数据库连接,邮 ...
- 可视化工具连接mysql报1862【mysql修改登录密码】
1862是密码被修改了. 修改方法: 1.以root登录账户: 账户与密码都是root mysql -uroot -proot 2.修改密码 set password = password('1234 ...