Description

Input

第一行是两个正整数 N, M。 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果。每行 包含一个“01”串和一个数字,用一个空格隔开。“01”串按位依次表示每只虫 子是否被放入机器:如果第 i 个字符是“0”则代表编号为 i 的虫子未被放入,“1” 则代表已被放入。后面跟的数字是统计的昆虫足数 mod 2 的结果。 由于 NASA的实验机器精确无误,保证前后数据不会自相矛盾。即给定数据 一定有解。

Output

在给定数据存在唯一解时有 N+1行,第一行输出一个不 超过M的正整数K,表明在第K 次统计结束后就可以确定唯一解;接下来 N 行 依次回答每只千足虫的身份,若是奇数条足则输出“?y7M#”(火星文),偶数 条足输出“Earth”。如果输入数据存在多解,输出“Cannot Determine”。 所有输出均不含引号,输出时请注意大小写。

Sample Input

3 5
011 1
110 1
101 0
111 1
010 1

Sample Output

4
Earth
?y7M#
Earth

HINT

对于 20%的数据,满足 N=M≤20; 
对于 40%的数据,满足 N=M≤500; 
对于 70%的数据,满足 N≤500,M≤1,000; 
对于 100%的数据,满足 N≤1,000,M≤2,000。

==========================================================
请不要提交!

Source

第一轮Day1

裸的高斯消元,听说1000^3过不了,要bitset压位才能过,pascal蒟蒻表示很害怕,然而发现不压位就过了。

 program rrr(input,output);
var
a:array[..,..]of boolean;
n,m,i,j,k,ans:longint;
c:char;
flag,t:boolean;
begin
assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
readln(n,m);
for i:= to m do
begin
for j:= to n do begin read(c);if c='' then a[i,j]:=false else a[i,j]:=true; end;
read(c);read(c);if c='' then a[i,n+]:=false else a[i,n+]:=true;
readln;
end;
ans:=;flag:=true;
for i:= to n do
begin
for k:=i to m do if a[k,i] then break;
if not a[k,i] then begin flag:=false;break; end;
if k>ans then ans:=k;
for j:=i to n+ do begin t:=a[i,j];a[i,j]:=a[k,j];a[k,j]:=t; end;
for j:= to m do
if (j<>i) and a[j,i] then
for k:=i to n+ do a[j,k]:=a[j,k] xor a[i,k];
end;
if flag then begin writeln(ans);for i:= to n do if a[i,n+] then writeln('?y7M#') else writeln('Earth'); end else write('Cannot Determine');
close(input);close(output);
end.

bzoj1923[Sdoi2010]外星千足虫(高斯消元)的更多相关文章

  1. BZOJ1923:[SDOI2010]外星千足虫(高斯消元)

    Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行 包含一个“01”串和一个数字,用一个空格隔开.“01 ...

  2. 【BZOJ1923】[Sdoi2010]外星千足虫 高斯消元

    [BZOJ1923][Sdoi2010]外星千足虫 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行 ...

  3. 【BZOJ-1923】外星千足虫 高斯消元 + xor方程组

    1923: [Sdoi2010]外星千足虫 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 766  Solved: 485[Submit][Status ...

  4. BZOJ 1923: [Sdoi2010]外星千足虫 [高斯消元XOR]

    1923: [Sdoi2010]外星千足虫 对于 100%的数据,满足 N≤1,000,M≤2,000. 裸高斯消元解异或方程组 给定方程顺序要求用从上到下最少的方程,那么找主元时记录一下最远找到哪个 ...

  5. P2447 [SDOI2010]外星千足虫 (高斯消元)

    题目 P2447 [SDOI2010]外星千足虫 解析 sol写到自闭,用文字描述描述了半个小时没描述出来,果然还是要好好学语文 用高斯消元求解异或方程组. 因为 \(奇数\bigoplus奇数=偶数 ...

  6. BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)

    题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...

  7. Luogu P2447 [SDOI2010]外星千足虫 高斯消元

    链接 给出的条件是异或类型的方程,可以直接用bitset优化高斯消元. 至于求K,在高斯消元时记录用到的最大的方程的编号即可. 代码: // luogu-judger-enable-o2 #inclu ...

  8. BZOJ 1923: [Sdoi2010]外星千足虫 高斯消元+bitset

    高斯消元求解异或方程组,可以多学一下 $bitset$ 在位运算中的各种神奇操作. #include <cstdio> #include <bitset> #define N ...

  9. LG2447/BZOJ1923 「SDOI2010」外星千足虫 高斯消元

    问题描述 LG2447 BZOJ1923 题解 显然是一个高斯消元,但是求的东西比较奇怪 发现这个方程组只关心奇偶性,于是可以用一个\(\mathrm{bitset}\)进行优化,用xor来进行消元操 ...

  10. [bzoj1923]外星千足虫[高斯消元]

    高斯消元解异或方程组 #include <iostream> #include <algorithm> #include <cstdio> #include < ...

随机推荐

  1. 自己在UWP程序上调用usb转串口的路程

    之前一直是在普通的framework环境下写串口,使用的类为 SerialPort 这个类大家可能比较熟悉.但是在UWP的开发里,使用的是 SerialDevice 这个类,是不一样的. 1. 清单文 ...

  2. WPF 如何自定义一个弹框

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 简述: 手工以原生Grid的方式,自定义了一个仿弹窗效果,优点可以自定义,缺点需要自己实现以及维护整个弹窗的效 ...

  3. 【转】glumer Appium + Python环境搭建(移动端自动化)

    最近整理了一下自动化的东西,好久没搭建环境又踩了不少坑,appium的环境搭建比较繁琐,好多同行估计都在环境上被卡死了.分享一下~~ 一.安装JDK,配置JDK环境    百度搜索下载就行,这里分享一 ...

  4. python3 selenium实现自动登陆网页

    一.  安装python3与pycharm python安装参考链接:https://www.cnblogs.com/hepeilinnow/p/9727922.html pycharm最好安装专业版 ...

  5. 配置文件语言之yaml

    一. Yaml YAML 是一种简洁的非标记语言.YAML以数据为中心,使用空白,缩进,分行组织数据,从而使得表示更加简洁易读. 由于实现简单,解析成本很低,YAML特别适合在脚本语言中使用.列一下现 ...

  6. Openwrt之移动硬盘ext3/ext4格式化工具

    在给openwrt挂载移动硬盘的时候,最好是ext3/ext4方式,但在windows下苦于无法找到合适的工具进行格式化. 踅摸了半天,终于找到了它:MiniTool Partion  Wizard ...

  7. Lua学习笔记(6): 函数

    Lua的函数 函数用于简化程序,当某些工作需要重复执行的时候就可以使用函数减轻工作量(虽然复制粘贴也行) 语法: function 函数名(参数列表) 函数体 return 返回值 end --结束标 ...

  8. vue cli 3 +jquery

    const webpack = require('webpack')module.exports = { // baseUrl type:{string} default:'/' // 将部署应用程序 ...

  9. 如何隐藏掉SQL Server中自带系统数据库,数据表,存储过程等显示文件,只显示用户的数据库,数据表等文件

    企业管理器了,---->   编辑该数据库的注册属性--->“常规”属性页下面-->“显示系统数据库和系统对象”的选项去掉

  10. gevent协程、select IO多路复用、socketserver模块 改造多用户FTP程序例子

    原多线程版FTP程序:http://www.cnblogs.com/linzetong/p/8290378.html 只需要在原来的代码基础上稍作修改: 一.gevent协程版本 1. 导入geven ...