题意:给出n个区间,求选择一些区间,使得一个点被覆盖的次数超过m次,最小的花费。花费指的是选择的区间中最大长度减去最小长度。

坐标值这么大,n比较小,显然需要离散化,需要一个技巧,把区间转化为半开半闭区间,然后线段树的每一个节点表示一个半开半闭区间。

接着我们注意到需要求最小的花费,且这个花费只与选择的区间集合中的最大长度和最小长度有关。

这意味着如果最大长度和最小长度一定,我们显然是需要把中间长度的区间尽量的选择进去使答案不会变的更劣。

不妨把区间按长度排序,枚举每个最小长度区间,然后最大区间尽量的往右移,直到满足有一个点覆盖次数>=m。

这不就是尺取法吗。。。所以我们需要维护一个数据结构支持区间加减法,区间查询最大值。显然线段树可以满足这个要求。

因此总的时间复杂度就是O(nlogn).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int seg[N<<], tag[N<<];
struct Node{int l, r;}node[N];
VI v; bool comp(Node a, Node b){return a.r-a.l<b.r-b.l;}
void push_up(int p){seg[p]=max(seg[p<<],seg[p<<|]);}
void push_down(int p){
if (!tag[p]) return ;
seg[p]+=tag[p]; tag[p<<]+=tag[p]; tag[p<<|]+=tag[p]; tag[p]=;
}
void update(int p, int l, int r, int L, int R, int val){
push_down(p);
if (L>r||R<l) return ;
if (L<=l&&R>=r) tag[p]+=val, push_down(p);
else {
int mid=(l+r)>>;
update(lch,L,R,val); update(rch,L,R,val); push_up(p);
}
}
int query(int p, int l, int r, int L, int R){
push_down(p);
if (L>r||R<l) return ;
if (L<=l&&R>=r) return seg[p];
int mid=(l+r)>>;
return max(query(lch,L,R),query(rch,L,R));
}
int main ()
{
int n, m;
n=Scan(); m=Scan();
FOR(i,,n) node[i].l=Scan(), node[i].r=Scan(), v.pb(node[i].l), v.pb(node[i].r+);
sort(v.begin(),v.end()); sort(node+,node+n+,comp);
int siz=unique(v.begin(),v.end())-v.begin()+;
int l=, r=, ans=INF, L, R;
while (l<=n&&r<=n) {
while (r<=n) {
int val=query(,,siz,,siz);
if (val>=m) {ans=min(ans,node[r].r-node[r].l-node[l].r+node[l].l); break;}
++r; L=lower_bound(v.begin(),v.begin()+siz,node[r].l)-v.begin()+;
R=lower_bound(v.begin(),v.begin()+siz,node[r].r+)-v.begin();
update(,,siz,L,R,);
}
L=lower_bound(v.begin(),v.begin()+siz,node[l].l)-v.begin()+;
R=lower_bound(v.begin(),v.begin()+siz,node[l].r+)-v.begin();
update(,,siz,L,R,-); ++l;
}
if (ans==INF) puts("-1");
else printf("%d\n",ans);
return ;
}

luogu 1712 区间(线段树+尺取法)的更多相关文章

  1. P1712-[NOI2016]区间【线段树,尺取法】

    正题 题目链接:https://www.luogu.com.cn/problem/P1712 题目大意 \(n\)个区间,求出其中\(m\)个区间使得它们有覆盖同一个点且最长区间长度减去最短长度最小. ...

  2. 2018.08.17 bzoj4653: [Noi2016]区间(线段树+尺取法)

    传送门 将坐标离散化之后直接用尺取法(双指针)+线段树维护. 其实就是说只要目前所有点的被覆盖次数是大于等于m的就移动左指针删除区间更新答案,否则移动右指针加入区间更新答案. 话说忘记排序以及建树的时 ...

  3. 【NOI2016】区间 题解(线段树+尺取法)

    题目链接 题目大意:给定$n$个区间$[l_i,r_i]$,选出$m$个区间使它们有一个共同的位置$x$,且使它们产生的费用最小.求最小费用.费用定义为最长的区间长度减去最短区间长度. ------- ...

  4. hdu 1540 Tunnel Warfare (区间线段树(模板))

    http://acm.hdu.edu.cn/showproblem.php?pid=1540 Tunnel Warfare Time Limit: 4000/2000 MS (Java/Others) ...

  5. BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)

    题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...

  6. 【bzoj3110】[Zjoi2013]K大数查询 权值线段树套区间线段树

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  7. Luogu P1712 [NOI2016]区间(线段树)

    P1712 [NOI2016]区间 题意 题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间, ...

  8. 【洛谷 P1712】 [NOI2016]区间 (线段树+尺取)

    题目链接 emmm看起来好像无从下手, \(l_i,r_i\)这么大,肯定是要离散化的. 然后我们是选\(m\)个区间,我们先对这些区间按长度排个序也不影响. 排序后,设我们取的\(m\)个区间的编号 ...

  9. BZOJ4653 [NOI2016]区间 [线段树,离散化]

    题目传送门 区间 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就 ...

随机推荐

  1. 2017-2018-1 20155320加分项目——pwd的实现

    2017-2018-1 20155320加分项目--pwd的实现 1 学习pwd命令 2 研究pwd实现需要的系统调用(man -k; grep),写出伪代码 3 实现mypwd 4 测试mypwd ...

  2. C语言复习20170716

    C语言复习20170716 C数据类型 图片来自:C语言基本数据类型简介 C语言程序处理的数据有常量和变量两种形式. 常量是在程序中不能改变其值的量.例如:整型常量.实型常量.字符常量.字符串常量和枚 ...

  3. 让系统识别特殊字符的密码(linux)

    mysql -h主机 -u用户 -p密码 当密码是! @ # 等特殊字符是,linux无法直接识别会报错 这种情况下可以参考以下两种方法: 1.-p后面不写密码,直接回车,再输入密码即可 2.用“\” ...

  4. sendcloud golang 发送短信 示例代码

    package main import ( "fmt" "crypto/md5" "encoding/hex" "sort&quo ...

  5. asp.net的forms身份验证 单用户身份验证

    asp.net的forms身份验证  单用户身份验证 首先要配置Web.config文件 <system.web> <authentication mode="Forms& ...

  6. AppCan 之初体验

    平台概述 什么是AppCan 移步这里,楼主的一句话:可以匹敌 Phonegap .Titanium .Sencha Touch .MUI .ImagApp.Nitrous .apicloud .起步 ...

  7. 基于DPDK的高效数据包捕获技术分析与应用

    被NFV的论文折磨了两天,今天上午看了两篇DPDK的综述. 传统的包捕获机制 1. BPF 两个组成部分:转发部分和过滤部分. 转发部分负责从链路层提取数据包并转发给过滤部分. 过滤部分根据过滤规则, ...

  8. asp.net登录状态验证

    文章:ASP.NET 登录验证 文章:ASP.NET MVC下判断用户登录和授权状态方法 文章:.net学习笔记---HttpHandle与HttpModule 第一篇文章,介绍了 1)早期的Base ...

  9. IIS 7.0 的 ASP.NET 应用程序生命周期概述

    文章:IIS 7.0 的 ASP.NET 应用程序生命周期概述 地址:https://msdn.microsoft.com/zh-cn/library/bb470252(v=vs.100).aspx ...

  10. Java 静态代码块&构造代码块&局部代码块

    /* 静态代码块. 随着类的加载而执行.而且只执行一次. 作用: 用于给类进行初始化. */ class StaticCode { static int num ; static { num = 10 ...