题目描述

a[1]=a[2]=a[3]=1

a[x]=a[x-3]+a[x-1] (x>3)

求a数列的第n项对1000000007(10^9+7)取余的值。

输入输出格式

输入格式:

第一行一个整数T,表示询问个数。

以下T行,每行一个正整数n。

输出格式:

每行输出一个非负整数表示答案。

输入输出样例

输入样例#1:

3
6
8
10
输出样例#1:

4
9
19

说明

对于30%的数据 n<=100;

对于60%的数据 n<=2*10^7;

对于100%的数据 T<=100,n<=2*10

Solution:

代码:

 #include<bits/stdc++.h>
#define il inline
#define ll long long
//#define debug printf("%d %s\n",__LINE__,__FUNCTION__)
using namespace std;
const int mod=;
int t,n;
il int gi()
{
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
struct mat{
int a[][],r,c;
};
il mat mul(mat x,mat y)
{
mat p;
memset(&p,,sizeof(p));
for(int i=;i<x.r;i++)
for(int j=;j<y.c;j++)
for(int k=;k<x.c;k++)
p.a[i][j]=(p.a[i][j]+x.a[i][k]*y.a[k][j])%mod;
p.r=x.r;p.c=y.c;
return p;
}
il void fast(int k)
{
mat p,ans;
memset(&p,,sizeof(p));
memset(&ans,,sizeof(ans));
p.r=p.c=;
p.a[][]=p.a[][]=p.a[][]=p.a[][]=;
ans.r=ans.c=;
ans.a[][]=ans.a[][]=ans.a[][]=;
while(k){
if(k&)ans=mul(p,ans);
p=mul(p,p);
k>>=;
}
p.a[][]=,p.a[][]=,p.a[][]=;
p.c=;
ans=mul(ans,p);
printf("%d\n",(int)ans.a[][]);
}
int main()
{
t=gi();
while(t--){
n=gi();
if(n<)printf("%d\n",n);
else fast(n-);
}
return ;
}

P1939 【模板】矩阵加速(数列)的更多相关文章

  1. 【洛谷P1939】 矩阵加速模板

    https://www.luogu.org/problemnew/show/P1939 矩阵快速幂 斐波那契数列 首先看一下斐波那契数列的矩阵快速幂求法: 有一个矩阵1*2的矩阵|f[n-2],f[n ...

  2. 洛谷 [P1939] 矩阵加速数列

    矩阵快速幂模版 #include <iostream> #include <cstring> #include <cstdlib> #include <alg ...

  3. Luogu P3390 【模板】矩阵快速幂&&P1939 【模板】矩阵加速(数列)

    补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一 ...

  4. P1939【模板】矩阵加速(数列)

    P1939[模板]矩阵加速(数列)难受就难受在a[i-3],这样的话让k=3就好了. #include<iostream> #include<cstdio> #include& ...

  5. 洛谷 P1939 【模板】矩阵加速(数列) 解题报告

    P1939 [模板]矩阵加速(数列) 题目描述 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 求a数列的第n项对1000000007(10^9+7)取余的值 ...

  6. [洛谷P1939]【模板】矩阵加速(数列)

    题目大意:给你一个数列a,规定$a[1]=a[2]=a[3]=1$,$a[i]=a[i-1]+a[i-3](i>3)$求$a[n]\ mod\ 10^9+7$的值. 解题思路:这题看似是很简单的 ...

  7. LuoGu P1939 【模板】矩阵加速(数列)

    板子传送门 矩阵快速幂学完当然要去搞一搞矩阵加速啦 (矩阵加速相对于矩阵快速幂来说就是多了一个构造矩阵的过程) 关于怎样来构造矩阵,这位大佬讲的很好呢 构造出矩阵之后,我们再去用矩阵快速幂乘出来,取[ ...

  8. 【luogu P1939 【模板】矩阵加速(数列)】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1939 对于矩阵推序列的式子: 由题意知: f[x+1] =1f[x] + 0f[x-1] + 1f[x-2] ...

  9. 斐波那契数列F(n)【n超大时的(矩阵加速运算) 模板】

    hihocoder #1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个 ...

  10. 洛谷 P1939 矩阵加速(数列)

    题意简述 \(a[1]=a[2]=a[3]=1\) \(a[x]=a[x−3]+a[x−1](x>3)\) 求a数列的第n项对1000000007取余的值. 题解思路 矩阵加速 设\[ F=\b ...

随机推荐

  1. [agc002D]Stamp Rally-[并查集+整体二分]

    Description 题目大意:给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的边的最大编号最小.n, ...

  2. 【转载】TCP/IP 之 大明王朝邮差

    原文:TCP/IP 之 大明王朝邮差 原创 2016-05-12 刘欣 码农翻身 前言: 本文主要想说一下TCP的知识, 比喻有不恰当之处,敬请包涵. 大明王朝天启四年, 清晨. 天色刚蒙蒙亮,我就赶 ...

  3. P3940 分组

    P3940 分组 https://www.luogu.org/problemnew/show/P3940 官方题解http://pan.baidu.com/s/1eSAMuXk 分析: 并查集. 首先 ...

  4. 带偏移量的AES加密工具

    自定义的一个对称加密工具类AESUtil.java public static final String ENCRYPTION_ALGORITHM = "AES"; public ...

  5. 【Windows定时关机】windows实现定时关机与取消

    背景:本人昨晚本来打算将电脑设置为晚上12点 30定时关机,结果写成了:12:30,所以就在刚才,我正玩游戏的时候, 电脑弹出提示:“windows将在一分钟内关闭”,我刚开始一脸懵逼,后来打开昨天敲 ...

  6. 车架号识别,VIN码识别 助力汽车后市场

    又有一家汽配圈新贵引入了小译家的 车架号识别(VIN码识别)技术 那就是明觉科技 是一个服务于汽车后市场 集数据服务.行业数据挖掘 及“互联网+”为一体的汽配信息协作平台 旗下拥有一款全车零配件信息智 ...

  7. 04-容器 What, Why, How

    What - 什么是容器? 容器是一种轻量级.可移植.自包含的软件打包技术,使应用程序可以在几乎任何地方以相同的方式运行.开发人员在自己笔记本上创建并测试好的容器,无需任何修改就能够在生产系统的虚拟机 ...

  8. nexus实现从windows迁移至Linux平台

    说明: 由于老环境是在本地windows 2008 R2里面搭建的nexus,前面搭建了jenkins,需要将maven私库迁移至云服务器的CentOS 7系统下,之前没做过nexus的迁移,在网上看 ...

  9. 牛客网暑期ACM多校训练营(第四场):A Ternary String(欧拉降幂)

    链接:牛客网暑期ACM多校训练营(第四场):A Ternary String 题意:给出一段数列 s,只包含 0.1.2 三种数.每秒在每个 2 后面会插入一个 1 ,每个 1 后面会插入一个 0,之 ...

  10. Hibernate入门篇<1>hibernate.cfg.xml学习小结

    Hibernate配置文件主要用于配置数据库连接和Hibernate运行时所需的各种属性,这个配置文件应该位于应用程序或Web程序的类文件夹 classes中.Hibernate配置文件支持两种形式, ...