Description

给定 \(n\) 个点,每个点有点权,连结两个点花费的代价为两点的点权和。另外有 \(m\) 条特殊边,参数为 \(x,y,z\)。意为如果你选择这条边,就可以花费 \(z\) 的代价将点 \(x\) 和点 \(y\) 连结起来,当然你也可以不选择这条边。求使整个图联通的最小代价

Input

第一行是两个整数,分别是点数 \(n\) 和特殊边的数量 \(m\)

下面一行 \(n\) 个数,第 \(i\) 个数代表点 \(i\) 的点权

下面 \(m\) 行,每行三个数 \(x,y,z\),代表一条特殊边

Output

输出一行一个整数,最小代价

Hint

\(1~\leq~n~\leq~2~\times~10^5~,0~\leq~m~\leq~2~\times~10^5\)

设第 \(i\) 个点的点权为 \(a_i\),第 \(j\) 条特殊边的边权为 \(z_j\),保证

\(1~\leq~a_i,z_j~\leq~10^{12}\)

保证特殊边的参数 \(x~\neq~y\)

Solution

显然这个题目是要求一个 MST (最小生成树),但是 \(O(n^2)\) 建图显然不可取。

我们考虑克鲁斯卡尔算法的本质:

有若干个联通块,每次寻找联通块间权值最小的边将之连结。

考虑对于本题来说,在不考虑特殊边的情况下,连结两个联通块,显然要分别选择两个联通块内点权最小的点连结。于是我们对每个集合维护点权最小的点,每次取出点权前两小的集合进行连边即可。维护点权前两小的集合显然可以用一个堆做。

考虑有特殊边怎么办:

我们把特殊边排序,每次比较当前的特殊边的权值小还是前两个联通块的点权小,选择更小的合并。

注意处理一下当前选出的两个点在一个集合中的情况。

因为一共要做 \(O(n)\) 次,每次会有 \(O(1)\) 次对堆的插入和删除操作,于是复杂度 \(O(n \log n)\)

Code

#include <cstdio>
#include <queue>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
} template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
} template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
} namespace OPT {
char buf[120];
} template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
} const int maxn = 200010;
const int maxm = 400010; struct Edge {
int from, to;
ll v;
inline bool operator<(const Edge &_others) const {
return this->v < _others.v;
}
};
Edge edge[maxm]; int n, m;
int ufs[maxn], vec[maxn], rk[maxn];
ll ans;
ll MU[maxn]; struct Zay {
int id;
ll v;
inline bool operator<(const Zay &_others) const {
return this->v > _others.v;
}
};
std::priority_queue<Zay>Q; int find(ci x) {return ufs[x] == x ? x : ufs[x] = find(ufs[x]);} int main() {
freopen("1.in", "r", stdin);
qr(n); qr(m);
for (rg int i = 1; i <= n; ++i) qr(MU[i]);
for (rg int i = 1; i <= m; ++i) {
qr(edge[i].from); qr(edge[i].to); qr(edge[i].v);
}
std::sort(edge + 1, edge + 1 + m);
edge[m + 1].v = 1ll << 62;
for (rg int i = 1; i <= n; ++i) ufs[i] = i, vec[i] = i, rk[i] = 1, Q.push((Zay){i, MU[i]});
for (rg int i = 1, cur = 1; i < n; ++i) {
while ((cur <= m) && (find(edge[cur].from) == find(edge[cur].to))) ++cur;
Zay t1 = Q.top(); Q.pop(); Zay t2 = Q.top(); Q.pop();
while (find(t1.id) == find(t2.id)) {t2 = Q.top(); Q.pop();}
if ((t1.v + t2.v) <= edge[cur].v) {
int fa = find(t1.id), fb = find(t2.id);
ans += t1.v + t2.v;
if (rk[fa] < rk[fb]) ufs[fb] = fa;
else if (rk[fa] > rk[fb]) ufs[fa] = fb;
else ufs[fa] = fb, ++rk[fb];
Q.push((Zay){find(fa), t1.v});
vec[find(fa)] = vec[fa];
} else {
int fa = find(edge[cur].from), fb = find(edge[cur].to);
ans += edge[cur].v;
if (rk[fa] < rk[fb]) ufs[fb] = fa;
else if (rk[fa] > rk[fb]) ufs[fa] = fb;
else ufs[fa] = fb, ++rk[fb];
Q.push((Zay){find(fa), MU[vec[fa]]});
vec[find(fa)] = vec[fa];
Q.push(t1); Q.push(t2);
}
}
qw(ans, '\n', true);
return 0;
}

【生成树,堆】【CF1095F】 Make It Connected的更多相关文章

  1. [CF1095F]Make It Connected

    题目大意:给你$n(n\leqslant2\times10^5)$个点和$m(m\leqslant2\times10^5)$条边,第$i$个点点权为$a_i$.连接$u,v$两个点的代价为$a_u+a ...

  2. 【CF1095F】 Make It Connected(最小生成树)

    题目链接 如果没有特殊边的话显然答案就是权值最小的点向其他所有点连边. 所以把特殊边和权值最小的点向其他点连的边丢一起跑最小生成树就行了. #include <cstdio> #inclu ...

  3. 题解 CF1095F 【Make It Connected】

    题意简述 \(n\)( \(1≤n≤2×10^5\) )个点,每个点 \(i\) 有一个点权 \(a_i\) ( \(1≤a_i≤2×10^{12}\) ),将两个点 \(i\),\(j\) 直接相连 ...

  4. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  5. POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25310   Accepted: 7022 Desc ...

  6. [POJ2728] Desert King 解题报告(最优比率生成树)

    题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...

  7. PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由

    03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...

  8. ACM:Pseudoforest-并查集-最大生成树-解题报

    Pseudoforest Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status ...

  9. hdu 3367 Pseudoforest(最大生成树)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

随机推荐

  1. 《物质世界 (Outward)》证明不必压缩制作大型角色扮演游戏的时间

    <物质世界>是一款雄心勃勃的开放世界角色扮演游戏 (RPG),设计这款游戏的公司规模只有您预期的三分之一.游戏中的一切都是动态的,拥有许多炫酷的系统设计,大家可以分屏合作掌控整个场景.参与 ...

  2. 搭建RTSP服务器时nginx的nginx.conf文件配置

    worker_processes 1; events { worker_connections 1024;} http { include mime.types; default_type appli ...

  3. 【springmvc+mybatis项目实战】杰信商贸-7.生产厂家新增

    我们要实现新的功能,就是生产厂家的新增先来回顾一下系统架构图我们数据库这边已经建好表了,接下来要做的就是mapper映射 编辑FactoryMapper.xml文件,加入“添加”的逻辑配置代码块 &l ...

  4. Debian 9 + Windows 10 双系统安装体验

    很久之前就想在自己的电脑上也装个 Debian 玩玩了,最近正好有时间折腾,就踩了踩坑在笔记本上装了玩玩~ UEFI + GPT 解决启动相关的麻烦配置 如果在支持 UEFI 的电脑上安装 Debia ...

  5. mysql group by 取第一条

    select * from table where id in (select max(id) from table group by sku) 说明:id是自增序列,sku是表中的一个字段

  6. Buy the Ticket HDU 1133 卡特兰数应用+Java大数

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

  7. Android 7.1.1 又出幺蛾子了 —— 再谈 Android 上的 Wifi 连接

    在之前的博客文章中,我写了点在 Android 6 系统中连接到指定名称的 Wifi 的体验.然而,在 Android 7 中,有一些东西又变化了.另外就是在那篇文章中我说要提供代码,结果拖到这篇文章 ...

  8. c# 读取blob数据

    Stream stream = new MemoryStream(data); BinaryReader r = new BinaryReader(stream); int iRawImageWidt ...

  9. 软件工程课堂练习——找出1-n中1出现的个数

    题目:给定一个十进制的正整数,写下从1开始,到N的所有整数,然后数一下其中出现“1”的个数. 要求:写一个函数 f(N) ,返回1 到 N 之间出现的 “1”的个数.例如 f(12)  = 5. 在3 ...

  10. Ubuntu16.04安装oracle-java8-installer

    本篇博客参考 1. 安装默认JRE/JDK 更新 sudo apt-get update 检查是否安装了Java java -version 如果返回The program java can be f ...