Description

给定 \(n\) 个点,每个点有点权,连结两个点花费的代价为两点的点权和。另外有 \(m\) 条特殊边,参数为 \(x,y,z\)。意为如果你选择这条边,就可以花费 \(z\) 的代价将点 \(x\) 和点 \(y\) 连结起来,当然你也可以不选择这条边。求使整个图联通的最小代价

Input

第一行是两个整数,分别是点数 \(n\) 和特殊边的数量 \(m\)

下面一行 \(n\) 个数,第 \(i\) 个数代表点 \(i\) 的点权

下面 \(m\) 行,每行三个数 \(x,y,z\),代表一条特殊边

Output

输出一行一个整数,最小代价

Hint

\(1~\leq~n~\leq~2~\times~10^5~,0~\leq~m~\leq~2~\times~10^5\)

设第 \(i\) 个点的点权为 \(a_i\),第 \(j\) 条特殊边的边权为 \(z_j\),保证

\(1~\leq~a_i,z_j~\leq~10^{12}\)

保证特殊边的参数 \(x~\neq~y\)

Solution

显然这个题目是要求一个 MST (最小生成树),但是 \(O(n^2)\) 建图显然不可取。

我们考虑克鲁斯卡尔算法的本质:

有若干个联通块,每次寻找联通块间权值最小的边将之连结。

考虑对于本题来说,在不考虑特殊边的情况下,连结两个联通块,显然要分别选择两个联通块内点权最小的点连结。于是我们对每个集合维护点权最小的点,每次取出点权前两小的集合进行连边即可。维护点权前两小的集合显然可以用一个堆做。

考虑有特殊边怎么办:

我们把特殊边排序,每次比较当前的特殊边的权值小还是前两个联通块的点权小,选择更小的合并。

注意处理一下当前选出的两个点在一个集合中的情况。

因为一共要做 \(O(n)\) 次,每次会有 \(O(1)\) 次对堆的插入和删除操作,于是复杂度 \(O(n \log n)\)

Code

#include <cstdio>
#include <queue>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
} template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
} template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
} namespace OPT {
char buf[120];
} template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
} const int maxn = 200010;
const int maxm = 400010; struct Edge {
int from, to;
ll v;
inline bool operator<(const Edge &_others) const {
return this->v < _others.v;
}
};
Edge edge[maxm]; int n, m;
int ufs[maxn], vec[maxn], rk[maxn];
ll ans;
ll MU[maxn]; struct Zay {
int id;
ll v;
inline bool operator<(const Zay &_others) const {
return this->v > _others.v;
}
};
std::priority_queue<Zay>Q; int find(ci x) {return ufs[x] == x ? x : ufs[x] = find(ufs[x]);} int main() {
freopen("1.in", "r", stdin);
qr(n); qr(m);
for (rg int i = 1; i <= n; ++i) qr(MU[i]);
for (rg int i = 1; i <= m; ++i) {
qr(edge[i].from); qr(edge[i].to); qr(edge[i].v);
}
std::sort(edge + 1, edge + 1 + m);
edge[m + 1].v = 1ll << 62;
for (rg int i = 1; i <= n; ++i) ufs[i] = i, vec[i] = i, rk[i] = 1, Q.push((Zay){i, MU[i]});
for (rg int i = 1, cur = 1; i < n; ++i) {
while ((cur <= m) && (find(edge[cur].from) == find(edge[cur].to))) ++cur;
Zay t1 = Q.top(); Q.pop(); Zay t2 = Q.top(); Q.pop();
while (find(t1.id) == find(t2.id)) {t2 = Q.top(); Q.pop();}
if ((t1.v + t2.v) <= edge[cur].v) {
int fa = find(t1.id), fb = find(t2.id);
ans += t1.v + t2.v;
if (rk[fa] < rk[fb]) ufs[fb] = fa;
else if (rk[fa] > rk[fb]) ufs[fa] = fb;
else ufs[fa] = fb, ++rk[fb];
Q.push((Zay){find(fa), t1.v});
vec[find(fa)] = vec[fa];
} else {
int fa = find(edge[cur].from), fb = find(edge[cur].to);
ans += edge[cur].v;
if (rk[fa] < rk[fb]) ufs[fb] = fa;
else if (rk[fa] > rk[fb]) ufs[fa] = fb;
else ufs[fa] = fb, ++rk[fb];
Q.push((Zay){find(fa), MU[vec[fa]]});
vec[find(fa)] = vec[fa];
Q.push(t1); Q.push(t2);
}
}
qw(ans, '\n', true);
return 0;
}

【生成树,堆】【CF1095F】 Make It Connected的更多相关文章

  1. [CF1095F]Make It Connected

    题目大意:给你$n(n\leqslant2\times10^5)$个点和$m(m\leqslant2\times10^5)$条边,第$i$个点点权为$a_i$.连接$u,v$两个点的代价为$a_u+a ...

  2. 【CF1095F】 Make It Connected(最小生成树)

    题目链接 如果没有特殊边的话显然答案就是权值最小的点向其他所有点连边. 所以把特殊边和权值最小的点向其他点连的边丢一起跑最小生成树就行了. #include <cstdio> #inclu ...

  3. 题解 CF1095F 【Make It Connected】

    题意简述 \(n\)( \(1≤n≤2×10^5\) )个点,每个点 \(i\) 有一个点权 \(a_i\) ( \(1≤a_i≤2×10^{12}\) ),将两个点 \(i\),\(j\) 直接相连 ...

  4. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  5. POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25310   Accepted: 7022 Desc ...

  6. [POJ2728] Desert King 解题报告(最优比率生成树)

    题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...

  7. PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由

    03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...

  8. ACM:Pseudoforest-并查集-最大生成树-解题报

    Pseudoforest Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status ...

  9. hdu 3367 Pseudoforest(最大生成树)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

随机推荐

  1. jsp 修改页面感受

    什么事情只有做过才知道. 最近在负责官网的开发,有一些页面需要和前端商量着修改,但是看到jsp那繁杂的标签和各种css,js混到一起,实在觉得jsp已经是一种落后的技术了,在修改过程中频频出现各种格式 ...

  2. ip route ifconfig 基本命令

    1.route命令 route –n route add –net 192.168.2.0/24 dev eth0 route add –net 192.168.2.0 netmask 255.255 ...

  3. 初创型公司如何经济有效的申请邓白氏编码(DUNS)

    听说有免费,和800元,1500元,上万元等不同的申请方式?听说申请完还要等十数个工作日让邓白氏和苹果的数据库同步.不同高低价格的申请方式得到的编码都能被苹果接受吗? http://www.zhihu ...

  4. MySQL Proxy和 Amoeba 工作机制浅析

    MySQL Proxy处于客户端应用程序和MySQL服务器之间,通过截断.改变并转发客户端和后端数据库之间的通信来实现其功能,这和WinGate 之类的网络代理服务器的基本思想是一样的.代理服务器是和 ...

  5. visual studio 2010 和 VSS(Visual SourceSafe)的连接使用

    visual studio 2010 和 VSS(Visual SourceSafe)的连接使用 1. 在visual vstudio中选择使用VSS插件: 2.       使用VSS进行源码管理: ...

  6. Python Fileinput 模块介绍

    作者博文地址:http://www.cnblogs.com/spiritman/ fileinput模块提供处理一个或多个文本文件的功能,可以通过使用for循环来读取一个或多个文本文件的所有行. [默 ...

  7. Linux下使用vim编辑C程序

    这几天在系统能力班自学linux,加上最近大数据课上开始使用linux,我在这里总结一下,linux下使用vim编辑c程序的一些问题. 大数据课上是直接使用micro来编辑的,我这里只是简单的说明一下 ...

  8. “Hello World!”团队第六周的第五次会议

    今天是我们团队“Hello World!”团队第六周召开的第五次会议.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七.燃尽图 八.代码 一 ...

  9. PSP DAILY的NABCD分析

    1) N (Need 需求) PSP Daily 解决了用户(软件工程课上学生)记录例行报告.写每周PSP表格和统计的需求.潜在用户还有未来该课堂的学生和需要用PSP方法记录任务完成时间和统计的学习者 ...

  10. 软工实践Beta冲刺答辩

    福大软工 · 第十二次作业 - Beta答辩总结 组长本次博客作业链接 项目宣传视频链接 本组成员 1 . 队长:白晨曦 031602101 2 . 队员:蔡子阳 031602102 3 . 队员:陈 ...