bzoj1907: 树的路径覆盖(树形DP)
一眼题...
f[i][0]表示在i连接一个子树的最小值,f[i][1]表示在i连接两个子树的最小值,随便转移...
样例挺强的1A了美滋滋...
UPD:学习了2314的写法之后短了好多T T
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=, inf=1e9;
struct poi{int too, pre;}e[maxn];
int n, T, tot, x, y;
int f[maxn][], last[maxn];
void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void add(int x, int y){e[++tot]=(poi){y, last[x]}; last[x]=tot;}
inline int min(int a, int b){return a<b?a:b;}
void dfs(int x, int fa)
{
f[x][]=maxn; f[x][]=; int sum=;
for(int i=last[x], too;i;i=e[i].pre)
if((too=e[i].too)!=fa)
{
dfs(too, x);
f[x][]=min(f[x][]+min(f[too][], f[too][]), f[x][]+f[too][]-);
f[x][]=min(f[x][]+min(f[too][], f[too][]), sum+f[too][]);
sum+=min(f[too][], f[too][]);
}
}
int main()
{
read(T);
while(T--)
{
read(n); memset(last, , (n+)<<); tot=;
for(int i=;i<n;i++) read(x), read(y), add(x, y), add(y, x);
dfs(, ); printf("%d\n", min(f[][], f[][]));
}
}
旧代码:
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=, inf=1e9;
struct poi{int too, pre;}e[maxn];
int n, T, tot, x, y;
int f[maxn][], last[maxn];
void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void add(int x, int y){e[++tot]=(poi){y, last[x]}; last[x]=tot;}
inline int min(int a, int b){return a<b?a:b;}
void dfs(int x, int fa)
{
int mn1=inf, mn2=inf, mni1=, mni2=, tmp=; f[x][]=; f[x][]=-;
for(int i=last[x], too;i;i=e[i].pre)
if((too=e[i].too)!=fa)
{
dfs(too, x);
f[x][]+=min(f[too][], f[too][]);
if(f[too][]==min(f[too][], f[too][])) tmp=;
if(f[too][]-min(f[too][], f[too][])<mn1) mn1=f[too][]-min(f[too][], f[too][]), mni1=too;
else if(f[too][]-min(f[too][], f[too][])<mn2) mn2=f[too][]-min(f[too][], f[too][]), mni2=too;
}
f[x][]+=tmp;
if(!(f[x][]-tmp)) {f[x][]=; f[x][]=inf; return;}
if(mn2==inf) {f[x][]=inf; return;}
for(int i=last[x], too;i;i=e[i].pre)
if((too=e[i].too)!=fa)
{
if(too==mni1 || too==mni2) f[x][]+=f[too][];
else f[x][]+=min(f[too][], f[too][]);
}
}
int main()
{
read(T);
while(T--)
{
read(n); memset(last, , (n+)<<); tot=;
for(int i=;i<n;i++) read(x), read(y), add(x, y), add(y, x);
dfs(, ); printf("%d\n", min(f[][], f[][]));
}
}
bzoj1907: 树的路径覆盖(树形DP)的更多相关文章
- 【bzoj1907】树的路径覆盖 树形dp
题目描述 输入 输出 样例输入 1 7 1 2 2 3 2 4 4 6 5 6 6 7 样例输出 3 题解 树形dp 设f[x]表示以x为根的子树完成路径覆盖,且x为某条路径的一端(可以向上延伸)的最 ...
- BZOJ-1907 树的路径覆盖 贪心
题意:给一个n个点的树,求树的最小路径覆盖.(这个最小路径覆盖不能有重点) 解法:往图论方向想很久,想得太复杂了,其实直接贪心.这个大佬题解写得很好: https://blog.csdn.net/bl ...
- BZOJ1907 树的路径覆盖
ydc题解上写着贪心,后来又说是树形dp...可惜看不懂(顺便骗三连) 其实就是每个叶子开始拉一条链,从下面一路走上来,遇到能把两条链合起来的就合起来就好了. /******************* ...
- bzoj 1907: 树的路径覆盖【贪心+树形dp】
我是在在做网络流最小路径覆盖的时候找到这道题的 然后发现是个贪心+树形dp \( f[i] \)表示在\( i \)为根的子树中最少有几条链,\( v[i] \) 表示在\( i \)为根的子树中\( ...
- [BZOJ 1907] 树的路径覆盖 【树形DP】
题目链接:BZOJ - 1907 题目分析 使用树形 DP,f[x][0] 表示以 x 为根的子树不能与 x 的父亲连接的最小路径数(即 x 是一个折线的拐点). f[x][1] 表示以 x 为根的子 ...
- 『快乐链覆盖 树形dp』
快乐链覆盖 Description 给定一棵 n 个点的树,你需要找至多 k 条互不相交的路径,使得它们的长度之和最大 定义两条路径是相交的:当且仅当存在至少一个点,使得这个点在两条路径中都出现 定义 ...
- BZOJ5123 线段树的匹配(树形dp)
线段树的任意一棵子树都相当于节点数与该子树相同的线段树.于是假装在树形dp即可,记忆化搜索实现,有效状态数是logn级别的. #include<iostream> #include< ...
- 1113: [视频]树形动态规划(TreeDP)8:树(tree)(树形dp状态设计总结)
根据最近做的几道树形dp题总结一下规律.(从这篇往前到洛谷 P1352 ) 这几道题都是在一颗树上,然后要让整棵树的节点或边 满足一种状态.然后点可以影响到相邻点的这种状态 然后求最小次数 那么要从两 ...
- [CEOI2007]树的匹配Treasury(树形DP+高精)
题意 给一棵树,你可以匹配有边相连的两个点,问你这棵树的最大匹配时多少,并且计算出有多少种最大匹配. N≤1000,其中40%的数据答案不超过 108 题解 显然的树形DP+高精. 这题是作为考试题考 ...
随机推荐
- Git之hotfix热修复分支
1.假设你正在开发一个新功能, 需要新建一个new分支并切换: git checkout -b new 等价于 git branch new git checkout new 然后在这个new分支上已 ...
- Tree Traversals Again(根据前序,中序,确定后序顺序)
题目的大意是:进行一系列的操作push,pop.来确定后序遍历的顺序 An inorder binary tree traversal can be implemented in a non-recu ...
- 在Office 365 的如何给管理员赋予查看所有人邮箱的权限的Powershell
连接至Office365 的Powershell Get-MsolUser -UserPrincipalName admin@***.partner.onmschina.cn //Get-MsolUs ...
- POJ 1417 并查集 dp
After having drifted about in a small boat for a couple of days, Akira Crusoe Maeda was finally cast ...
- 如何通俗理解贝叶斯推断与beta分布?
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完 ...
- nginx响应client的处理机制
nginx与apache的不同响应机制——epoll nginx可以处理上百万级别的并发请求就是源至于异步非阻塞的处理机制,异步非阻塞核心即是epoll nginx内部反向代理
- 20181120-6 Beta阶段第2周/共2周 Scrum立会报告+燃尽图 03
此作业要求参见:[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2411] 版本控制地址 [https://git.coding.n ...
- 欢迎来怼--第二十三次Scrum会议
一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/11 17:20~17:55,总计35min. 地 ...
- 第十一次作业 - Alpha 事后诸葛亮(团队)
软工 · 第十一次作业 - Alpha 事后诸葛亮(团队) 组长本次作业链接 现代软件工程 项目Postmortem 设想和目标 1.我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场 ...
- lintcode-411-格雷编码
411-格雷编码 格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个二进制的差异. 给定一个非负整数 n ,表示该代码中所有二进制的总数,请找出其格雷编码顺序.一个格雷编码顺序必须以 0 ...