2005: [Noi2010]能量采集

Time Limit: 10 Sec  Memory Limit: 552 MB
Submit: 4368  Solved: 2607
[Submit][Status][Discuss]

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

题解

这道题有多种解法。
首先对于一个点(x,y),它的贡献为2 * gcd(x,y) - 1,因为在(x,y)之前有gcd(x,y) - 1个点与它斜率相等【即在它与0的连线上】
这样我们的任务就变成了求∑∑gcd(i,j)
求gcd和有多种方法,比较简单的就是设f[i]表示gcd = i的个数,g[i]表示i | gcd的个数
那么显然g[i] = [n / i] * [m / i]
而f[i] = g[i] - (f[2 * i] + f[3 * i] + f[4 * i] + .....)
倒推即可求出
最后的gcdsum = ∑f[i] * i
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
int n,m;
LL f[maxn];
int main()
{
cin>>n>>m;
if (n > m) swap(n,m);
LL ans = 0;
for (int i = n; i > 0; i--){
f[i] = (LL)(n / i) * (m / i);
for (int k = i + i; k <= n; k += i)
f[i] -= f[k];
ans += f[i] * i;
}
cout<<2 * ans - (LL)n * m<<endl;
return 0;
}

BZOJ2005 能量汇集 【gcd求和】的更多相关文章

  1. bzoj2005 能量采集 gcd 容斥

    ans = sigma_x(sigma_y(gcd(x,y) * 2 - 1)),1<=x<=n,1<=y<=m 枚举x,y,O(nmlogn),超时 换个角度,枚举d = g ...

  2. Bzoj-2005 能量采集 gcd,递推

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题意:题目转换后的模型就是求Σ(gcd(x,y)), 1<=x<=n, ...

  3. bzoj2005 能量采集 莫比乌斯或者普通容斥

    /** 题目:bzoj2005 能量采集 链接:https://vjudge.net/contest/178455#problem/F 题意:栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可 ...

  4. [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]

    题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...

  5. 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)

    [bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  6. 【BZOJ2005】【NOI2010】能量采集(莫比乌斯反演,容斥原理)

    [BZOJ2005][NOI2010]能量采集(莫比乌斯反演,容斥原理) 题面 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量 ...

  7. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  8. 数学(动态规划,GCD):COGS 469. [NOI2010]能量采集

    能量采集 ★★☆   输入文件:energy2010.in   输出文件:energy2010.out   简单对比 时间限制:1 s   内存限制:512 MB [问题描述] 栋栋有一块长方形的地, ...

  9. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

随机推荐

  1. TPO-16 C2 Reschedule the medieval history test

    TPO-16 C2 Reschedule the medieval history test 第 1 段 1.Listen to a conversation between a Professor ...

  2. 1.6 JAVA高并发之线程池

    一.JAVA高级并发 1.5JDK之后引入高级并发特性,大多数的特性在java.util.concurrent 包中,是专门用于多线程发编程的,充分利用了现代多处理器和多核心系统的功能以编写大规模并发 ...

  3. 使用MyBatis遇到的一些需要记录下的问题

    (1)MyBaits结果集返回Map,Map集合乱序. xml 中的SQL 输出: 改成: 输出: 目测跟字母顺序有关:ABCDEFGHIJKLMNOPQRSTUVWXYZ (2)需要对字段动态排序 ...

  4. Echarts-K线图提示框改头换面

    工作: 使用Hbuilder建web工程,加入echarts相关库,根据需要更改K线图及其的提示样式,去除默认提示,使用异步加载echarts的数据,数据格式为json. 需要注意的K线图和5日均线, ...

  5. Leetcode_2. Add_Two_Number

    2. Add_Two_Number 用两个非空链表分别表示两个非负整数,链表的节点表示数字的位,链表头表示数字的低位,链表尾表示数字高位.求两个链表所表示数字的和. 比如: Input: (2 -&g ...

  6. IT视频课程集

    马哥Linux培训视频课程:http://pan.baidu.com/s/1pJwk7dp Oracle.大数据系列课程:http://pan.baidu.com/s/1bnng3yZ 天善智能BI培 ...

  7. node项目设置环境变量

    在UNIX系统中: $ NODE_ENV=production node app 在Windows中: $ set NODE_ENV=production $ node app 这些环境变量会出现在程 ...

  8. Erlang/Elixir: 使用 OpenCV, Python 搭建图片缩略图服务器

    这篇文章是在OSX上测试和运行的的, Ubuntu下的安装和配置请移步到这里 应用程序进程树, 默认 Poolboy 中初始化10个用于处理图片的 Python 工作进程(Worker) 首先安装Op ...

  9. DoItYourself!

    在杨老师的勉励下,我准备开始“自己”写程序.速度很慢,不过在写的过程中对于用到的几个函数更加熟悉.也尝试多学一点,学透一点.遇到不会的函数,语法不清楚的,还是会百度,不过会自己再敲一遍.重复下去. 下 ...

  10. Codeforces Round #287 (Div. 2) E. Breaking Good 最短路

    题目链接: http://codeforces.com/problemset/problem/507/E E. Breaking Good time limit per test2 secondsme ...