LG4717 【模板】快速沃尔什变换
快速沃尔什变换
题目描述
给定长度为\(2^n\)两个序列\(A,B\),设\(C_i=\sum_{j\oplus k}A_jB_k\)分别当\(\oplus\)是or,and,xor时求出C
输入输出格式
输入格式:
第一行一个数n。 第二行\(2^n\)个数\(A_0..A_{2^n-1}\)第三行\(2^n\)个数\(B_0..B_{2^n-1}\)
输出格式:
三行每行\(2^n\)个数,分别代表\(\oplus\)是or,and,xor时\(C_0..C_{2^n-1}\)的值\(\bmod\ 998244353\)
输入输出样例
输入样例#1:
2
2 4 6 8
1 3 5 7
输出样例#1:
2 22 46 250
88 64 112 56
100 92 68 60
说明
\(n\le 17\)。
题解
2015吕凯风论文和2013王迪论文。
快速莫比乌斯变换
这个只能用来做集合并和与卷积,但是容易理解。
我通过《浅谈容斥原理》找到了另一种形式:
那么通过相同的手段,就可以做集合交卷积。
快速沃尔什变换
这个理论有点复杂,现场推是不可能的,所以背版子吧。
还有类似FFT的实现,不过我反而觉得难写许多。
代码总结
and是超集和变换(高维后缀和)。逆变换是超集差变换。
or是子集和变换(高维前缀和)。逆变换是子集差变换。
xor是蝴蝶变换。逆变换是最后除以长度。
void FAT(poly&a,int dir){ // and -> superset
int lim=a.size(),len=log2(lim);
for(int j=0;j<len;++j)
for(int i=0;i<lim;++i)if(~i>>j&1)
a[i]=add(a[i],dir==1?a[i|1<<j]:mod-a[i|1<<j]);
}
void FOT(poly&a,int dir){ // or -> subset
int lim=a.size(),len=log2(lim);
for(int j=0;j<len;++j)
for(int i=0;i<lim;++i)if(i>>j&1)
a[i]=add(a[i],dir==1?a[i^1<<j]:mod-a[i^1<<j]);
}
void FXT(poly&a,int dir){ // xor
int lim=a.size(),len=log2(lim);
for(int j=0;j<len;++j)
for(int i=0;i<lim;++i)if(~i>>j&1){
int l=a[i],r=a[i|1<<j];
a[i]=add(l,r),a[i|1<<j]=add(l,mod-r);
}
if(dir==-1){
int ilim=fpow(lim,mod-2);
for(int i=0;i<lim;++i) a[i]=mul(a[i],ilim);
}
}
int main(){
int len=read<int>(),lim=1<<len;
poly f(lim),g(lim);
for(int i=0;i<lim;++i) read(f[i]);
for(int i=0;i<lim;++i) read(g[i]);
// or
poly a=f,b=g;
FOT(a,1),FOT(b,1);
for(int i=0;i<lim;++i) a[i]=mul(a[i],b[i]);
FOT(a,-1);
for(int i=0;i<lim;++i) printf("%d%c",a[i]," \n"[i==lim-1]);
// and
a=f,b=g;
FAT(a,1),FAT(b,1);
for(int i=0;i<lim;++i) a[i]=mul(a[i],b[i]);
FAT(a,-1);
for(int i=0;i<lim;++i) printf("%d%c",a[i]," \n"[i==lim-1]);
// xor
a=f,b=g;
FXT(a,1),FXT(b,1);
for(int i=0;i<lim;++i) a[i]=mul(a[i],b[i]);
FXT(a,-1);
for(int i=0;i<lim;++i) printf("%d%c",a[i]," \n"[i==lim-1]);
return 0;
}
LG4717 【模板】快速沃尔什变换的更多相关文章
- 洛谷.4717.[模板]快速沃尔什变换(FWT)
题目链接 https://www.mina.moe/archives/7598 //285ms 3.53MB #include <cstdio> #include <cctype&g ...
- Fast Walsh-Hadamard Transform——快速沃尔什变换
模板题: 给定$n = 2^k$和两个序列$A_{0..n-1}$, $B_{0..n-1}$,求 $$C_i = \sum_{j \oplus k = i} A_j B_k$$ 其中$\oplus$ ...
- [学习笔记]FWT——快速沃尔什变换
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...
- 快速沃尔什变换(FWT)学习笔记
概述 FWT的大体思路就是把要求的 C(x)=A(x)×B(x) 即 \( c[i]=\sum\limits_{j?k=i} (a[j]*b[k]) \) 变换成这样的:\( c^{'}[i]=a^ ...
- 初学FWT(快速沃尔什变换) 一点心得
FWT能解决什么 有的时候我们会遇到要求一类卷积,如下: Ci=∑j⊕k=iAj∗Bk\large C_i=\sum_{j⊕k=i}A_j*B_kCi=j⊕k=i∑Aj∗Bk此处乘号为普通乘法 ...
- JS组件系列——BootstrapTable+KnockoutJS实现增删改查解决方案(四):自定义T4模板快速生成页面
前言:上篇介绍了下ko增删改查的封装,确实节省了大量的js代码.博主是一个喜欢偷懒的人,总觉得这些基础的增删改查效果能不能通过一个什么工具直接生成页面效果,啥代码都不用写了,那该多爽.于是研究了下T4 ...
- 关于快速沃尔什变换(FWT)的一点学习和思考
最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...
- FWT快速沃尔什变换学习笔记
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
随机推荐
- redis—Spring中redis缓存的简单使用
这里使用的是 Spring-4.3 , redis-2.8 的版本 1.添加maven依赖 <dependency> <groupId>redis.clients</ ...
- SQLServer中char、varchar、nchar、nvarchar比较
转自:http://www.cnblogs.com/bluesky_blog/archive/2009/07/31/1535722.html 对于程序中的string型字段,SQLServer中有ch ...
- AVAudioFoundation(6):时间和媒体表示
本文转自:AVAudioFoundation(6):时间和媒体表示 | www.samirchen.com 本文主要内容来自 AVFoundation Programming Guide. 基于时间的 ...
- Mac OS 终端下使用 Curl 命令下载文件
在 mac os下,如何通过命令行来下载网络文件?如果你没有安装或 wget 命令,那么可以使用 curl 工具来达到我们的目的. curl命令参数: curl 'url地址' curl [选项] ' ...
- python基础学习十 logging模块详细使用【转载】
很多程序都有记录日志的需求,并且日志中包含的信息既有正常的程序访问日志,还可能有错误.警告等信息输出,python的logging模块提供了标准的日志接口,你可以通过它存储各种格式的日志,主要用于输出 ...
- SQL学习笔记八之ORM框架SQLAlchemy
阅读目录 一 介绍 二 创建表 三 增删改查 四 其他查询相关 五 正查.反查 一 介绍 SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进 ...
- Element-UI中Upload上传文件前端缓存处理
Element-UI对于文件上传组件的功能点着重于文件传递到后台处理,所以要求action为必填属性.但是如果需要读取本地文件并在前端直接处理,文件就没有必要传递到后台,比如在本地打开一个JSON文件 ...
- 20145325张梓靖 《Java程序设计》第2周学习总结
20145325张梓靖 <Java程序设计>第2周学习总结 教材学习内容总结 整数 short 2字节,int 4字节,long 8字节 字节 byte 1字节 浮点数 float 4字节 ...
- POJ 1061 青蛙的约会(扩展欧几里得算法)
http://poj.org/problem?id=1061 思路: 搞懂这个扩展欧几里得算法花了不少时间,数论真的是难啊. 含义:找出一对整数,使得ax+by=gcd(a,b). 接下来看这道题目, ...
- Eclipse插件Fat Jar
1.安装 1)Eclipse在线更新方法 Help > Install New Software > Add, name:Fat Jar location:http://kurucz-gr ...