递归--练习2--noi6261汉诺塔
递归--练习2--noi6261汉诺塔
一、心得
先把递推公式写出来,会很简单的
二、题目
6261:汉诺塔问题
- 总时间限制:
- 1000ms
- 内存限制:
- 65536kB
- 描述
-
约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到中间的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。
这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615
这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算机解决64层的汉诺塔。假定圆盘从小到大编号为1, 2, ...
- 输入
- 输入为一个整数后面跟三个单字符字符串。
整数为盘子的数目,后三个字符表示三个杆子的编号。 - 输出
- 输出每一步移动盘子的记录。一次移动一行。
每次移动的记录为例如 a->3->b 的形式,即把编号为3的盘子从a杆移至b杆。 - 样例输入
-
2 a b c
- 样例输出
-
a->1->c
a->2->b
c->1->b
三、AC代码
/*
noi6261汉诺塔问题
Hanoi(n-1,a,c,b);
cout<<a<<"->"<<n<<"->"<<b<<endl;
Hanoi(n-1,c,b,a);
边界条件:
n==1
*/
#include <iostream>
using namespace std;
//将n个盘子从a经过c移动到b
void Hanoi(int n,char a,char b,char c){
if(==n) cout<<a<<"->"<<<<"->"<<b<<endl;
else{
Hanoi(n-,a,c,b);
cout<<a<<"->"<<n<<"->"<<b<<endl;
Hanoi(n-,c,b,a);
} }
int main(){
int n;
char a,b,c;
cin>>n>>a>>b>>c;
Hanoi(n,a,b,c);
return ;
}
递归--练习2--noi6261汉诺塔的更多相关文章
- JAVA递归算法及经典递归例子 对于这个汉诺塔问题
前言:递归(recursion):递归满足2个条件 1)有反复执行的过程(调用自身) 2)有跳出反复执行过程的条件(递归出口) 第一题:汉诺塔 对于这个汉诺塔问题,在写递归时,我们只需要确定两个条件: ...
- C#中汉诺塔问题的递归解法
百度测试部2015年10月份的面试题之——汉诺塔. 汉诺塔就是将一摞盘子从一个塔转移到另一个塔的游戏,中间有一个用来过度盘子的辅助塔. 百度百科在此. 游戏试玩在此. 用递归的思想解决汉诺塔问题就是分 ...
- python汉诺塔问题的递归理解
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下 ...
- [Python3 练习] 006 汉诺塔2 非递归解法
题目:汉诺塔 II 接上一篇 [Python3 练习] 005 汉诺塔1 递归解法 这次不使用递归 不限定层数 (1) 解决方式 利用"二进制" (2) 具体说明 统一起见 我把左 ...
- Conquer and Divide经典例子之汉诺塔问题
递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...
- [python]汉诺塔问题
相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏.该游戏是在一块铜板装置上,有三根杆(编号A.B.C),在A杆自下而上.由大到小按顺序放置64个金盘(如下图).游戏的目标:把A杆上的金盘全部 ...
- 算法笔记_013:汉诺塔问题(Java递归法和非递归法)
目录 1 问题描述 2 解决方案 2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...
- C#递归解决汉诺塔问题(Hanoi)
using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...
- "递归"实现"约瑟夫环","汉诺塔"
一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开 ...
随机推荐
- 模拟退火算法(西安网选赛hdu5017)
Ellipsoid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total ...
- [shell]用shell脚本将本地文件夹与ftp上的文件夹同步
需求说明 最近在AIX上做开发,开发机器在office网段,测试机器在lab网段,不能互相通讯,只能通过特定的ftp来传文件. 每次上传的机器都要做:登录ftp,进入我的目录,上传:下载的机器都要做: ...
- spriing boot 启动报错:Cannot determine embedded database driver class for database type NONE
最近在学习使用spring boot.使用maven创建好工程,只引用需要用到的spring boot相关的jar包,除此之外没有任何的配置. 写了一个最简单的例子,如下所示: package com ...
- 利用Python分析GP服务运行结果的输出路径 & 实现服务输出路径的本地化 分类: Python ArcGIS for desktop ArcGIS for server 2015-08-06 19:49 3人阅读 评论(0) 收藏
最近,一直纠结一个问题:做好的GP模型或者脚本在本地运行,一切正常:发布为GP服务以后时而可以运行成功,而更多的是运行失败,甚至不能知晓运行成功后的结果输出在哪里. 铺天盖地的文档告诉我,如下信息: ...
- Django - 模型层 - 下
一.多表 sql 单表 多表 多对一 多对多 一对一 =============================================== 一对多:Book id title price p ...
- FPN(feature pyramid networks)
多尺度的object detection算法:FPN(feature pyramid networks). 原来多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征 ...
- 关于volatile 最完整的一篇文章
你真的了解volatile关键字吗? 一.Java内存模型 想要理解volatile为什么能确保可见性,就要先理解Java中的内存模型是什么样的. Java内存模型规定了所有的变量都存储在主内存中.每 ...
- linux 的nohup & 和daemon 总结(转)
add by zhj:守护进程貌似跟nohup + &方式启动的进程差不多.都可以实现与终端的无关联. 原文:http://blog.csdn.net/lovemdx/article/de ...
- 【Loadrunner】性能测试报告实战
一.一份好的性能测试报告需要遵循什么规则? 好的报告只需要遵循3点即可:清晰的结构.简要的语言以及数据的对比. 二.如何用Loadrunner自动到处HTML以及word版的报告? 1.导出html格 ...
- go-004-数据结构
在 Go 编程语言中,数据类型用于声明函数和变量. 数据类型的出现是为了把数据分成所需内存大小不同的数据,编程的时候需要用大数据的时候才需要申请大内存,就可以充分利用内存. Go 语言按类别有以下几种 ...