hdu4549矩阵快速幂+费马小定理
转移矩阵很容易求就是|0 1|,第一项是|0|
|1 1| |1|
然后直接矩阵快速幂,要用到费马小定理 :假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1(这东西贡献了我8次wa)
对矩阵进行取余的时候余mod-1,因为矩阵求出来是要当作幂的,就是a^b%p=a^(b%(p-1))%p
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define pi acos(-1)
#define ll long long
#define mod 1000000007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=<<+,inf=0x3f3f3f3f; struct Node{
ll row,col;
ll a[N][N];
};
Node mul(Node x,Node y)
{
Node ans;
ans.row=x.row,ans.col=y.col;
memset(ans.a,,sizeof ans.a);
for(ll i=;i<x.row;i++)
for(ll j=;j<x.col;j++)
for(ll k=;k<y.col;k++)
ans.a[i][k]=(ans.a[i][k]+x.a[i][j]*y.a[j][k])%(mod-);
return ans;
}
Node quick_mul(Node x,ll n)
{
Node ans;
ans.row=x.row,ans.col=x.col;
memset(ans.a,,sizeof ans.a);
for(ll i=;i<ans.col;i++)ans.a[i][i]=;
while(n){
if(n&)ans=mul(ans,x);
x=mul(x,x);
n>>=;
}
return ans;
}
ll mmul(ll a,ll b)
{
ll ans=;
while(b){
if(b&)ans=ans*a%mod;
a=a*a%mod;
b>>=;
}
return ans%mod;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
// cout<<setiosflags(ios::fixed)<<setprecision(2);
ll x,y,n;
while(cin>>x>>y>>n){
if(n==)
{
cout<<x<<endl;
continue;
}
Node A;
A.row=,A.col=;
A.a[][]=,A.a[][]=;
A.a[][]=,A.a[][]=;
A=quick_mul(A,n-);
Node B;
B.row=,B.col=;
B.a[][]=,B.a[][]=;
B=mul(A,B);
ll ans=mmul(x,B.a[][])*mmul(y,B.a[][])%mod;
cout<<ans<<endl;
}
return ;
}
hdu4549矩阵快速幂+费马小定理的更多相关文章
- hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)
Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...
- M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Submi ...
- hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)
题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- HDU 5667 Sequence【矩阵快速幂+费马小定理】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意: Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到 ...
- hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速 ...
- HDU 5667 Sequence 矩阵快速幂+费马小定理
题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; ...
- HDU——5667Sequence(矩阵快速幂+费马小定理应用)
Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total S ...
- 2020牛客寒假算法基础集训营1 J. 缪斯的影响力 (矩阵快速幂/费马小定理降幂)
https://ac.nowcoder.com/acm/problem/200658 f(n) = f(n-1) * f(n-2) * ab ,f的第一项是x,第二项是y. 试着推出第三项是x·y·a ...
随机推荐
- Redis分布式队列解决文件并发的问题
1.首先将捕获的异常写到Redis的队列中 public class MyExceptionAttribute : HandleErrorAttribute { public static IRedi ...
- java 新手入门课程03
2017.7.6 java 课堂笔记 1.关于分支; if/else 是基于boolean 值的双分支 Switch 基于数字(包括整数 char byte 枚举, 字符串)类型的多分支 方法 ...
- Cisco设备开启telnet登录
思科设备怎么开启telnet登录 configuration line vty 0 4SW1(config-line)#transp input telne
- HDU_3193_Find the hotel
Find the hotel Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- 一次tns连接错误的解决过程
--同事hadoop连接oracle导入数据,界面报错,后台alert日志报错tns相关错误: **************************************************** ...
- Warm up---hdu4612(缩点,树的直径)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4612 给一个无向图, 加上一条边后,求桥最少有几个: 那我们加的那条边的两个顶点u,v:一定是u,v之 ...
- uchome 缓存生成
一.uchome的缓存目录 ---------data此目录要有777权限 (1)模板文件缓存机制 1:在要显示的页面通过include template($name) 语句来包含被编译后的模板文件 ...
- 离线安装Chrome 插件
说明: Postman不多介绍,是一款功能强大的网页调试与发送网页HTTP请求的Chrome插件.本文主要介绍下安装过程. 本文使用的是解压文件直接进行安装.是比较快速有效的安装方式 第一步:把下载后 ...
- Openstack(十七)部署快存储cinder
官方部署文档:https://docs.openstack.org/ocata/zh_CN/install-guide-rdo/cinder.html OpenStack的存储组件—Cinder和Sw ...
- [LeetCode] 82. Remove Duplicates from Sorted List II_Medium tag: Linked List
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinctnumbe ...