前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现。

自从 Ian Goodfellow 在 14 年发表了 论文 Generative Adversarial Nets 以来,生成式对抗网络 GAN 广受关注,加上学界大牛 Yann Lecun 在 Quora 答题时曾说,他最激动的深度学习进展是生成式对抗网络,使得 GAN 成为近年来在机器学习领域的新宠,可以说,研究机器学习的人,不懂 GAN,简直都不好意思出门。

下面我们来简单介绍一下生成式对抗网络,主要介绍三篇论文:1)Generative Adversarial Networks;2)Conditional Generative Adversarial Nets;3)Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks。

首先来看下第一篇论文,了解一下 GAN 的过程和原理:

GAN 启发自博弈论中的二人零和博弈(two-player game),GAN 模型中的两位博弈方分别由生成式模型(generative model)和判别式模型(discriminative model)充当。生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。可以做如下类比:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。如图所示:

在训练的过程中固定一方,更新另一方的网络权重,交替迭代,在这个过程中,双方都极力优化自己的网络,从而形成竞争对抗,直到双方达到一个动态的平衡(纳什均衡),此时生成模型 G 恢复了训练数据的分布(造出了和真实数据一模一样的样本),判别模型再也判别不出来结果,准确率为 50%,约等于乱猜。

上述过程可以表述为如下公式:

当固定生成网络 G 的时候,对于判别网络 D 的优化,可以这样理解:输入来自于真实数据,D 优化网络结构使自己输出 1,输入来自于生成数据,D 优化网络结构使自己输出 0;当固定判别网络 D 的时候,G 优化自己的网络使自己输出尽可能和真实数据一样的样本,并且使得生成的样本经过 D 的判别之后,D 输出高概率。

第一篇文章,在 MNIST 手写数据集上生成的结果如下图:

最右边的一列是真实样本的图像,前面五列是生成网络生成的样本图像,可以看到生成的样本还是很像真实样本的,只是和真实样本属于不同的类,类别是随机的。

第二篇文章想法很简单,就是给 GAN 加上条件,让生成的样本符合我们的预期,这个条件可以是类别标签(例如 MNIST 手写数据集的类别标签),也可以是其他的多模态信息(例如对图像的描述语言)等。用公式表示就是:

式子中的 y 是所加的条件,结构图如下:

生成结果如下图:

图中所加的条件 y 是类别标签。

第三篇文章,简称(DCGAN),在实际中是代码使用率最高的一篇文章,本系列文的代码也是这篇文章代码的初级版本,它优化了网络结构,加入了 conv,batch_norm 等层,使得网络更容易训练,网络结构如下:

可以有加条件和不加条件两种网络,论文还做了好多试验,展示了这个网络在各种数据集上的结果。有兴趣同学可以去看论文,此文我们只从代码的角度理解去理解它。

参考文献:

1. http://blog.csdn.net/solomon1558/article/details/52549409

不要怂,就是GAN (生成式对抗网络) (一): GAN 简介的更多相关文章

  1. 生成式对抗网络(GAN)学习笔记

    图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的 ...

  2. GAN生成式对抗网络(四)——SRGAN超高分辨率图片重构

    论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈 ...

  3. GAN生成式对抗网络(三)——mnist数据生成

    通过GAN生成式对抗网络,产生mnist数据 引入包,数据约定等 import numpy as np import matplotlib.pyplot as plt import input_dat ...

  4. GAN生成式对抗网络(一)——原理

    生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型 GAN包括两个核心模块. 1.生成器模块 --generator 2.判别器模块--de ...

  5. 不要怂,就是GAN (生成式对抗网络) (一)

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  6. AI 生成式对抗网络(GAN)

    生成式对抗网络(Generative Adversarial Network,简称GAN),主要由两部分构成:生成模型G和判别模型D.训练GAN就是两种模型的对抗过程. 生成模型:利用任意噪音(ran ...

  7. 生成式对抗网络(GAN)

    生成对抗网络(GAN),是深度学习模型之一,2014年lan Goodfellow的开篇之作Generative Adversarial Network, GAN概述 GAN包括两个模型,一个是生成模 ...

  8. 不要怂,就是GAN (生成式对抗网络) (二)

    前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...

  9. 不要怂,就是GAN (生成式对抗网络) (六):Wasserstein GAN(WGAN) TensorFlow 代码

    先来梳理一下我们之前所写的代码,原始的生成对抗网络,所要优化的目标函数为: 此目标函数可以分为两部分来看: ①固定生成器 G,优化判别器 D, 则上式可以写成如下形式: 可以转化为最小化形式: 我们编 ...

随机推荐

  1. 使用caddy 进行nodejs web应用近实时编译更新

    caddy 相比nginx 是一个不错的轻量代理服务器,支持的功能也是比较多的, 同时插件也挺多 demo 测试的是通过git 插件进行一个使用spec-md 编写的文档近实时编译以及预览 项目使用d ...

  2. vs2005 sp1 补丁的安装问题

    最近做windows mobile 6.0的手机软件开发,听说用vs2005 开发的话最少得装vs2005 sp1,于是去官网上下了VS80sp1-KB926604-X86-CHS.exe 补丁 .运 ...

  3. C# zedgraph 怎么设置初始时坐标轴的比例??

    http://bbs.csdn.net/topics/390872329 已解决,,,我问是刷新图用的,,我以为mypane.YAxis.Scale.Min=0; mypane.YAxis.Scale ...

  4. redis与lua

    内容大纲 redis里使用eval和evalsha redis管理Lua脚本  php里使用redis的lua脚本 在redis里使用lua脚本的好处 1.Lua脚本在Redis中是原子执行的,执行过 ...

  5. Boost C++ 库 中文教程(全)

    Boost C++ 库 目录 第 1 章 简介 第 2 章 智能指针 第 3 章 函数对象 第 4 章 事件处理 第 5 章 字符串处理 第 6 章 多线程 第 7 章 异步输入输出 第 8 章 进程 ...

  6. 学习blus老师js(6)--js运动基础

    运动基础 一.匀速运动 运动框架 在开始运动时,关闭已有定时器 把运动和停止隔开(if/else) <!DOCTYPE HTML> <html> <head> &l ...

  7. [失败]SystemTap和火焰图(Flame Graph)

    本文参考http://blog.51cto.com/xuclv/1184517 SystemTap简介: SystemTap provides free software (GPL) infrastr ...

  8. MVC框架介绍

    第一,建立一个解决方案然后在该解决方案下面新建mvc空项目. 第二,下面先对该项目的一些文件进行介绍: MVC项目文件夹说明: 1.(App_Data):用来保存数据文件,比如XML文件等 2.(Ap ...

  9. 517. Super Washing Machines

    ▶ 超级洗碗机.给定一个有 n 元素的整数数组,我们把 “将指定位置上元素的值减 1,同时其左侧或者右侧相邻元素的值加 1” 称为一次操作,每个回合内,可以选定任意 1 至 n 个位置进行独立的操作, ...

  10. 基于 Lucene 的桌面文件搜索

    开源2010年,自己在学习 Lucene 时开发的一款桌面文件搜索工具,这么多年过去了,代码一直静静存放在自己的硬盘上,与其让其沉睡,不如分享出来. 这款工具带有明显的模仿 Everything 的痕 ...