[CQOI2006]凸多边形(半平面相交)
嘟嘟嘟
本来我要写feng shui这道题的。然后网上都说什么半平面相交,于是我还得现学这个东西,就来刷这道模板题了。
所谓的半平面相交和高中数学的分数规划特别像。比如这道题,把每一条边看成一条有向直线,则合法的范围都是直线的右半部分,最后求交集。大概是每一次都取一半,所以就叫半平面相交吧。
\(O(n ^ 2)\)的做法很简单,我也只会\(O(n ^ 2)\)的。枚举每一条边,然后用这条边去切当前算出来的图形。
具体怎么切?一句话就是把这条直线左边的点全部扔掉。
放个伪代码就明白了:
for 每条边ai ai+1
if (ai在AB右边)
把ai加入答案
if (ai+1在AB左边) 把交点加入答案
else if(ai+1在AB右边) 把交点加入答案
至于判断左右,用叉积求又向面积就行了。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = (ans << 1) + (ans << 3) + ch - '0'; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, m, cnt = 0;
struct Point
{
db x, y;
Point operator - (const Point& oth)const
{
return (Point){x - oth.x, y - oth.y};
}
db operator * (const Point& oth)const
{
return x * oth.y - oth.x * y;
}
Point operator * (const db& d)const
{
return (Point){x * d, y * d};
}
}p[maxn], a[maxn];
int tot = 0;
Point b[maxn];
db cross(Point A, Point B, Point C)
{
return (B - A) * (C - A);
}
void addCross(Point A, Point B, Point C, Point D)
{
db s1 = (C - A) * (D - A), s2 = (D - B) * (C - B);
b[++tot] = A - (A - B) * (s1 / (s1 + s2));
}
void cut(Point A, Point B)
{
tot = 0;
a[cnt + 1] = a[1];
for(int i = 1; i <= cnt; ++i)
{
if(cross(A, B, a[i]) >= 0)
{
b[++tot] = a[i];
if(cross(A, B, a[i + 1]) < 0) addCross(A, B, a[i], a[i + 1]);
}
else if(cross(A, B, a[i + 1]) > 0) addCross(A, B, a[i], a[i + 1]);
}
for(int i = 1; i <= tot; ++i) a[i] = b[i];
cnt = tot;
}
int main()
{
n = read(); m = read();
for(int i = 1; i <= m; ++i) a[i].x = read(), a[i].y = read();
cnt = m; n--;
while(n--)
{
m = read();
for(int i = 1; i <= m; ++i) p[i].x = read(), p[i].y = read();
p[m + 1] = p[1];
for(int i = 1; i <= m; ++i) cut(p[i], p[i + 1]);
}
a[cnt + 1] = a[1];
db ans = 0;
for(int i = 1; i <= cnt; ++i) ans += a[i] * a[i + 1];
printf("%.3lf\n", ans / 2);
return 0;
}
[CQOI2006]凸多边形(半平面相交)的更多相关文章
- bzoj 2618: [Cqoi2006]凸多边形 [半平面交]
2618: [Cqoi2006]凸多边形 半平面交 注意一开始多边形边界不要太大... #include <iostream> #include <cstdio> #inclu ...
- 洛谷 P4196 [CQOI2006]凸多边形 (半平面交)
题目链接:P4196 [CQOI2006]凸多边形 题意 给定 \(n\) 个凸多边形,求它们相交的面积. 思路 半平面交 半平面交的模板题. 代码 #include <bits/stdc++. ...
- 【BZOJ 2618】 2618: [Cqoi2006]凸多边形 (半平面交)
2618: [Cqoi2006]凸多边形 Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一 ...
- bzoj 2618 2618: [Cqoi2006]凸多边形(半平面交)
2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 656 Solved: 340[Submit][Status] ...
- 2018.07.04 BZOJ 2618 Cqoi2006凸多边形(半平面交)
2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MB Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n ...
- 【BZOJ2618】[CQOI2006]凸多边形(半平面交)
[BZOJ2618][CQOI2006]凸多边形(半平面交) 题面 BZOJ 洛谷 题解 这个东西就是要求凸多边形的边所形成的半平面交. 那么就是一个半平面交模板题了. 这里写的是平方的做法. #in ...
- [CQOI2006]凸多边形(半平面交)
很明显是一道半平面交的题. 先说一下半平面交的步骤: 1.用点向法(点+向量)表示直线 2.极角排序,若极角相同,按相对位置排序. 3.去重,极角相同的保留更优的 4.枚举边维护双端队列 5.求答案 ...
- 【半平面交】bzoj2618 [Cqoi2006]凸多边形
#include<cstdio> #include<cmath> #include<algorithm> using namespace std; #define ...
- bzoj2618: [Cqoi2006]凸多边形
Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一行有一个整数n,表示凸多边形的个数,以下依 ...
随机推荐
- golang操作mysql数据库
golang操作mysql数据库 代码: mysql的增.删.改.查 package main import ( "database/sql" "fmt" &q ...
- groovy实现循环、交换变量、多赋值、?.运算符
/** * Created by Jxy on 2019/1/3 10:01 * 1.实现循环的方式 * 2.安全导航操作符---?. * 3.一次性赋值给多个变量 */ 0.upto(2){ pri ...
- 并发模型之Master-Worker设计模式
一.Master-Worker设计模式 Master-Worker模式是常用的并行设计模式.它的核心思想是,系统有两个进程协议工作:Master进程和Worker进程.Master进程负责接收和分配任 ...
- Ubuntu16.04 安装maven
maven是个项目管理工具,在编程领域应用广泛.本文主要讲述如何在ubuntu16.04系统下安装maven. 第一步,去官网下载maven. 第二步,解压到/opt/maven目录. 创建manve ...
- MSSQL中的表变量
最近在看<Microsoft SQL Server2005技术内幕:T-SQL程序设计> 1.表变量的事务上下文中提到,表变量不受外部事务回滚影响. 举个例子: DECLARE @TA ...
- bootStrap下拉菜单 点击下拉列表某个元素,列表不隐藏
html: <a class="dropdown-toggle bgImg-priceWran " id="dropdownMenu1" data-tog ...
- jQuery瀑布流+无限加载图片
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Java快速入门-02-基础篇
Java快速入门-02-基础篇 上一篇应该已经让0基础的人对 Java 有了一些了解,接一篇更进一步 使用 Eclipse 快捷键 这个老师一般都经常提,但是自己不容易记住,慢慢熟练 快捷键 快捷键作 ...
- CSS盒子模型中()是透明的,这部分可以显示背景()
CSS盒子模型中()是透明的,这部分可以显示背景() border margin padding content 我的理解: · Margin(外边距) - 清除边框外的区域,外边距是透明 ...
- PURGE 的用法说明
PURGE PurposeUse the PURGE statement to remove a table or index from your recycle bin and release al ...