Description

  有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。
所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两
个相邻木块颜色不同的着色方案。

Input

  第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。

Output

  输出一个整数,即方案总数模1,000,000,007的结果。

Sample Input

3
1 2 3

Sample Output

10

HINT

100%的数据满足:1 <= k <= 15, 1 <= ci <= 5

Solution

思路非常妙,类似王八(划掉)乌龟棋
用f[a][b][c][d][e][last]
表示还能涂1\2\3\4\5块的颜色各有a\b\c\d\e种,上一次用的是能涂last块的颜色
记忆化搜索即可,看代码就很容易明白
last那一部分,若上一个用的是能涂三种颜色的时候,这一次选两种颜色的时候就有且只有一种能选两种的颜色与前一个冲突
所以统计答案的时候减去重复的那部分就好了。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define MOD (1000000007)
using namespace std;
int K,N,x,c[];
long long f[][][][][][]; long long dp(int a,int b,int c,int d,int e,int last)
{
if ((a|b|c|d|e)==) return ;
if (f[a][b][c][d][e][last]) return f[a][b][c][d][e][last];
long long now=;
if (a) now+=(a-(last==))*dp(a-,b,c,d,e,),now%=MOD;
if (b) now+=(b-(last==))*dp(a+,b-,c,d,e,),now%=MOD;
if (c) now+=(c-(last==))*dp(a,b+,c-,d,e,),now%=MOD;
if (d) now+=(d-(last==))*dp(a,b,c+,d-,e,),now%=MOD;
if (e) now+=e*dp(a,b,c,d+,e-,),now%=MOD;
f[a][b][c][d][e][last]=now;
return now;
} int main()
{
scanf("%d",&K);
for (int i=;i<=K;++i)
scanf("%d",&x),c[x]++;
printf("%lld",dp(c[],c[],c[],c[],c[],));
}

BZOJ1079:[SCOI2008]着色方案(DP)的更多相关文章

  1. bzoj 1079: [SCOI2008]着色方案 DP

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 803  Solved: 512[Submit][Status ...

  2. BZOJ1079 [SCOI2008]着色方案 【dp记忆化搜索】

    题目 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难看 ...

  3. BZOJ1079 [SCOI2008]着色方案 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1079 题目概括 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的 ...

  4. [luogu2476][bzoj1079][SCOI2008]着色方案【动态规划】

    题目描述 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难 ...

  5. BZOJ1079: [SCOI2008]着色方案 (记忆化搜索)

    题意:有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木块涂相同色显得很 ...

  6. 2018.10.20 bzoj1079: [SCOI2008]着色方案(多维dp)

    传送门 dp妙题. f[a][b][c][d][e][last]f[a][b][c][d][e][last]f[a][b][c][d][e][last]表示还剩下aaa个可以用一次的,还剩下bbb个可 ...

  7. BZOJ1079 [SCOI2008]着色方案[组合计数DP]

    $有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数.$ 关于这题的教训记录: 学会对于复杂的影响分开计,善于发现整体 ...

  8. bzoj1079: [SCOI2008]着色方案

    dp.以上次染色时用的颜色的数量和每种数量所含有的颜色作状态. #include<cstdio> #include<algorithm> #include<cstring ...

  9. 【记忆化搜索】bzoj1079 [SCOI2008]着色方案

    #include<cstring> #include<cstdio> using namespace std; #define MOD 1000000007 typedef l ...

随机推荐

  1. 一:Jquery-selector

    一:jQuery概述 1.基本功能 a.访问和操作DOM元素:获取元素,修改其样式和内容,删除元素,复制元素... b.对页面事件的处理:不需要指定事件中的函数名,直接在事件中绑定响应函数(匿名函数) ...

  2. js复选框全选反选

    本篇文章是关于复选框的,有2种形式:1.全选.反选由2个按钮实现:2.全选.反选由一个按钮实现. <!DOCTYPE html> <html> <head> < ...

  3. HDU 2276 Kiki & Little Kiki 2 矩阵构造

    Kiki & Little Kiki 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java ...

  4. Zookeeper Curator API 使用

    0. 原生 ZOOKEEPER JAVA API  http://www.cnblogs.com/rocky-fang/p/9030438.html 1. 概述 Curator采用cache封装对事件 ...

  5. 自己写的一个nodejs查找文件模块-node-find-all-files

    最近在折腾着用node-webkit搭建一个工具,其中要查找路径下的所有文件然后再进行压缩等操作,于是进写了这样的一个模块.代码如下: /* 输入目录找出目录下的所有文件,包括文件夹 */ /* 依赖 ...

  6. 转:php 获取memcache所有key

    文章出处 在php提供的用于与memcached交互的扩展模块中有memcached与memcache,前者提供方法getAllKeys用于遍历所有Memcached服务器上的key,但是并不保证原子 ...

  7. C#-求int数组中连续偶数列的个数

    例如:[3, 3, 2, 2, 2, 4, 3, 5, 4, 6, 3]=>2,2,2,4;4,6 结果为2     [3, 3, 2,3, 2, 2, 4, 3, 5, 4, 6, 3]=&g ...

  8. Google APAC----Africa 2010, Qualification Round(Problem C. T9 Spelling)----Perl 解法

    原题地址链接:https://code.google.com/codejam/contest/351101/dashboard#s=p2 问题描述: Problem The Latin alphabe ...

  9. 微服务架构之spring cloud gateway

    Spring Cloud Gateway是spring cloud中起着非常重要的作用,是终端调用服务的入口,同时也是项目中每个服务对外暴露的统一口径,我们可以在网关中实现路径映射.权限验证.负载均衡 ...

  10. Android adb命令查看sharedpreferences

    adb shell run-as com.example.android //对应包名 ls查看当前目录下的所有文件,找到shared_prefs cd shared_prefs ls 查看所有的 s ...