Hive的几种常见的数据导入方式
这里介绍四种:
(1)、从本地文件系统中导入数据到Hive表;
(2)、从HDFS上导入数据到Hive表;
(3)、从别的表中查询出相应的数据并导入到Hive表中;
(4)、在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中。

一、从本地文件系统中导入数据到Hive

先在Hive里面创建好表,如下:

  1. hive> create table wyp
  2. > (id int, name string,
  3. > age int, tel string)
  4. > ROW FORMAT DELIMITED
  5. > FIELDS TERMINATED BY '\t'
  6. > STORED AS TEXTFILE;
  7. OK
  8. Time taken: 2.832 seconds

复制代码

这个表很简单,只有四个字段,具体含义我就不解释了。本地文件系统里面有个/home/wyp/wyp.txt文件,内容如下:

  1. [wyp@master ~]$ cat wyp.txt
  2. 1       wyp     25      13188888888888
  3. 2       test    30      13888888888888
  4. 3       zs      34      899314121

复制代码

wyp.txt文件中的数据列之间是使用\t分割的,可以通过下面的语句将这个文件里面的数据导入到wyp表里面,操作如下:

  1. hive> load data local inpath 'wyp.txt' into table wyp;
  2. Copying data from file:/home/wyp/wyp.txt
  3. Copying file: file:/home/wyp/wyp.txt
  4. Loading data to table default.wyp
  5. Table default.wyp stats:
  6. [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 67]
  7. OK
  8. Time taken: 5.967 seconds

复制代码

这样就将wyp.txt里面的内容导入到wyp表里面去了,可以到wyp表的数据目录下查看,如下命令:

  1. hive> dfs -ls /user/hive/warehouse/wyp ;
  2. Found 1 items
  3. -rw-r--r--3 wyp supergroup 67 2014-02-19 18:23 /hive/warehouse/wyp/wyp.txt

复制代码

需要注意的是:

和我们熟悉的关系型数据库不一样,Hive现在还不支持在insert语句里面直接给出一组记录的文字形式,也就是说,Hive并不支持INSERT INTO …. VALUES形式的语句。

二、HDFS上导入数据到Hive表

  从本地文件系统中将数据导入到Hive表的过程中,其实是先将数据临时复制到HDFS的一个目录下(典型的情况是复制到上传用户的HDFS home目录下,比如/home/wyp/),然后再将数据从那个临时目录下移动(注意,这里说的是移动,不是复制!)到对应的Hive表的数据目录里面。既然如此,那么Hive肯定支持将数据直接从HDFS上的一个目录移动到相应Hive表的数据目录下,假设有下面这个文件/home/wyp/add.txt,具体的操作如下:

  1. [wyp@master /home/q/hadoop-2.2.0]$ bin/hadoop fs -cat /home/wyp/add.txt
  2. 5       wyp1    23      131212121212
  3. 6       wyp2    24      134535353535
  4. 7       wyp3    25      132453535353
  5. 8       wyp4    26      154243434355

复制代码

上面是需要插入数据的内容,这个文件是存放在HDFS上/home/wyp目录(和一中提到的不同,一中提到的文件是存放在本地文件系统上)里面,我们可以通过下面的命令将这个文件里面的内容导入到Hive表中,具体操作如下:

  1. hive> load data inpath '/home/wyp/add.txt' into table wyp;
  2. Loading data to table default.wyp
  3. Table default.wyp stats:
  4. [num_partitions: 0, num_files: 2, num_rows: 0, total_size: 215]
  5. OK
  6. Time taken: 0.47 seconds
  7. hive> select * from wyp;
  8. OK
  9. 5       wyp1    23      131212121212
  10. 6       wyp2    24      134535353535
  11. 7       wyp3    25      132453535353
  12. 8       wyp4    26      154243434355
  13. 1       wyp     25      13188888888888
  14. 2       test    30      13888888888888
  15. 3       zs      34      899314121
  16. Time taken: 0.096 seconds, Fetched: 7 row(s)

复制代码

从上面的执行结果我们可以看到,数据的确导入到wyp表中了!请注意load data inpath ‘/home/wyp/add.txt’ into table wyp;里面是没有local这个单词的,这个是和一中的区别。

三、从别的表中查询出相应的数据并导入到Hive表中

假设Hive中有test表,其建表语句如下所示:

  1. hive> create table test(
  2. > id int, name string
  3. > ,tel string)
  4. > partitioned by
  5. > (age int)
  6. > ROW FORMAT DELIMITED
  7. > FIELDS TERMINATED BY '\t'
  8. > STORED AS TEXTFILE;
  9. OK
  10. Time taken: 0.261 seconds

复制代码

大体和wyp表的建表语句类似,只不过test表里面用age作为了分区字段。对于分区,这里在做解释一下:

分区:在Hive中,表的每一个分区对应表下的相应目录,所有分区的数据都是存储在对应的目录中。比如wyp表有dt和city两个分区,则对应dt=20131218,city=BJ对应表的目录为/user/hive/warehouse/dt=20131218/city=BJ,所有属于这个分区的数据都存放在这个目录中。

下面语句就是将wyp表中的查询结果并插入到test表中:

  1. hive> insert into table test
  2. > partition (age='25')
  3. > select id, name, tel
  4. > from wyp;
  5. #####################################################################
  6. 这里输出了一堆Mapreduce任务信息,这里省略
  7. #####################################################################
  8. Total MapReduce CPU Time Spent: 1 seconds 310 msec
  9. OK
  10. Time taken: 19.125 seconds
  11. hive> select * from test;
  12. OK
  13. 5       wyp1    131212121212    25
  14. 6       wyp2    134535353535    25
  15. 7       wyp3    132453535353    25
  16. 8       wyp4    154243434355    25
  17. 1       wyp     13188888888888  25
  18. 2       test    13888888888888  25
  19. 3       zs      899314121       25
  20. Time taken: 0.126 seconds, Fetched: 7 row(s)

复制代码

这里做一下说明:
我们知道我们传统数据块的形式insert into table values(字段1,字段2),这种形式hive是不支持的。

通过上面的输出,我们可以看到从wyp表中查询出来的东西已经成功插入到test表中去了!如果目标表(test)中不存在分区字段,可以去掉partition (age=’25′)语句。当然,我们也可以在select语句里面通过使用分区值来动态指明分区:

  1. hive> set hive.exec.dynamic.partition.mode=nonstrict;
  2. hive> insert into table test
  3. > partition (age)
  4. > select id, name,
  5. > tel, age
  6. > from wyp;
  7. #####################################################################
  8. 这里输出了一堆Mapreduce任务信息,这里省略
  9. #####################################################################
  10. Total MapReduce CPU Time Spent: 1 seconds 510 msec
  11. OK
  12. Time taken: 17.712 seconds
  13. hive> select * from test;
  14. OK
  15. 5       wyp1    131212121212    23
  16. 6       wyp2    134535353535    24
  17. 7       wyp3    132453535353    25
  18. 1       wyp     13188888888888  25
  19. 8       wyp4    154243434355    26
  20. 2       test    13888888888888  30
  21. 3       zs      899314121       34
  22. Time taken: 0.399 seconds, Fetched: 7 row(s)

复制代码

这种方法叫做动态分区插入,但是Hive中默认是关闭的,所以在使用前需要先把hive.exec.dynamic.partition.mode设置为nonstrict。当然,Hive也支持insert overwrite方式来插入数据,从字面我们就可以看出,overwrite是覆盖的意思,是的,执行完这条语句的时候,相应数据目录下的数据将会被覆盖!而insert into则不会,注意两者之间的区别。例子如下:

  1. hive> insert overwrite table test
  2. > PARTITION (age)
  3. > select id, name, tel, age
  4. > from wyp;

复制代码

更可喜的是,Hive还支持多表插入,什么意思呢?在Hive中,我们可以把insert语句倒过来,把from放在最前面,它的执行效果和放在后面是一样的,如下:

  1. hive> show create table test3;
  2. OK
  3. CREATE  TABLE test3(
  4. id int,
  5. name string)
  6. Time taken: 0.277 seconds, Fetched: 18 row(s)
  7. hive> from wyp
  8. > insert into table test
  9. > partition(age)
  10. > select id, name, tel, age
  11. > insert into table test3
  12. > select id, name
  13. > where age>25;
  14. hive> select * from test3;
  15. OK
  16. 8       wyp4
  17. 2       test
  18. 3       zs
  19. Time taken: 4.308 seconds, Fetched: 3 row(s)

复制代码

可以在同一个查询中使用多个insert子句,这样的好处是我们只需要扫描一遍源表就可以生成多个不相交的输出。这个很酷吧!

四、在创建表的时候通过从别的表中查询出相应的记录并插入到所创建的表中

在实际情况中,表的输出结果可能太多,不适于显示在控制台上,这时候,将Hive的查询输出结果直接存在一个新的表中是非常方便的,我们称这种情况为CTAS(create table .. as select)如下:

  1. hive> create table test4
  2. > as
  3. > select id, name, tel
  4. > from wyp;
  5. hive> select * from test4;
  6. OK
  7. 5       wyp1    131212121212
  8. 6       wyp2    134535353535
  9. 7       wyp3    132453535353
  10. 8       wyp4    154243434355
  11. 1       wyp     13188888888888
  12. 2       test    13888888888888
  13. 3       zs      899314121
  14. Time taken: 0.089 seconds, Fetched: 7 row(s)

复制代码

数据就插入到test4表中去了,CTAS操作是原子的,因此如果select查询由于某种原因而失败,新表是不会创建的!

原文链接:

http://blog.csdn.net/lifuxiangcaohui/article/details/40588929

Hive插入数据的几种常用方法的更多相关文章

  1. SQLServer 批量插入数据的两种方法

    SQLServer 批量插入数据的两种方法-发布:dxy 字体:[增加 减小] 类型:转载 在SQL Server 中插入一条数据使用Insert语句,但是如果想要批量插入一堆数据的话,循环使用Ins ...

  2. [Hive_4] Hive 插入数据

    0. 说明 Hive 插入数据的方法 && Hive 插入数据的顺序 && 插入复杂数据的方法 && load 命令详解 1. Hive 插入数据的方法 ...

  3. 小白鼠排队(map容器插入数据的四种方法)

    题目描述 N只小白鼠(1 <= N <= 100),每只鼠头上戴着一顶有颜色的帽子.现在称出每只白鼠的重量,要求按照白鼠重量从大到小的顺序输出它们头上帽子的颜色.帽子的颜色用“red”,“ ...

  4. SQL 2005批量插入数据的二种方法

    SQL 2005批量插入数据的二种方法 Posted on 2010-07-22 18:13 moss_tan_jun 阅读(2635) 评论(2) 编辑 收藏 在SQL Server 中插入一条数据 ...

  5. Hive导入数据的四种方法

    Hive的几种常见的数据导入方式这里介绍四种:(1).从本地文件系统中导入数据到Hive表:(2).从HDFS上导入数据到Hive表:(3).从别的表中查询出相应的数据并导入到Hive表中:(4).在 ...

  6. 使用 Hive装载数据的几种方式

    装载数据 1.以LOAD的方式装载数据 LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION( ...

  7. MySQL批量插入数据的几种方法

    最近公司要求测试数据库的性能,就上网查了一些批量插入数据的代码,发现有好几种不同的用法,插入同样数据的耗时也有区别 别的先不说,先上一段代码与君共享 方法一: package com.bigdata; ...

  8. MariaDB快速批量插入数据的几种办法

    前言 当要向MariaDB中插入新的数据时,以下过程会影响插入所消耗的时间:(按时间消耗长短降序排序) 将数据sync到磁盘上(它是事务结束的一部分) 添加新的键值.索引越大,更新键值所消耗的时间就越 ...

  9. MyBatis 批量插入数据的 3 种方法!

    批量插入功能是我们日常工作中比较常见的业务功能之一,之前我也写过一篇关于<MyBatis Plus 批量数据插入功能,yyds!>的文章,但评论区的反馈不是很好,主要有两个问题:第一,对 ...

随机推荐

  1. poj 3630 Phone List trie树

    Phone List Description Given a list of phone numbers, determine if it is consistent in the sense tha ...

  2. RHEL6.5恢复root密码

    1.开机上下键停留在如下界面,键盘输入小写e: 2.选择如下选项,并输入小写e: 3.输入1,回车进入单用户模式: 4.键盘输入小写b,进行启动: 5.进入到单用户模式: 6.修改root用户密码,并 ...

  3. egg.js npm start 启动报错

    开发环境运行项目即npm run dev的时候是正常的,但是npm start会启动失败,最可能的原因是因为npm start启动使用egg-scripts机制启动,对于运行中遇到error日志就会中 ...

  4. SpringMVC注解@RequestMapping @RequestParam @ResponseBody 和 @RequestBody 解析

    SpringMVC Controller层获取参数及返回数据的方式: @RequestMapping @RequestMapping(“url”),这里的 url写的是请求路径的一部分,一般作用在 C ...

  5. 2018-2019-2《网络对抗技术》Exp0 Kali安装 Week1

    2018-2019-2<网络对抗技术>Exp0 Kali安装 Week1 Kali的安装 设置虚拟机的名称和操作系统 为虚拟机分配虚拟内存,大小为4096M,分配存储空间,大小为25.0G ...

  6. python 正则表达式详解

    正则表达式是一个很强大的字符串处理工具,几乎任何关于字符串的操作都可以使用正则表达式来完成,作为一个爬虫工作者,每天和字符串打交道,正则表达式更是不可或缺的技能,正则表达式的在不同的语言中使用方式可能 ...

  7. Mybatis四种分页方式

    数组分页 查询出全部数据,然后再list中截取需要的部分. mybatis接口 List<Student> queryStudentsByArray(); xml配置文件 <sele ...

  8. IEnumerable的用法

    本文导读:IEnumerable和IEnumerable<T>接口在.NET中是非常重要的接口,它允许开发人员定义foreach语句功能的实现并支持非泛型方法的简单的迭代,IEnumera ...

  9. 浅析使用vue-router实现前端路由的两种方式

    关于vue-router 由于最近的项目中一直在使用vue,所以前端路由方案也是使用的官方路由vue-router,之前在angularJS项目中也是用过UI-router,感觉大同小异,不过很显然v ...

  10. java基础---->Zip压缩的使用

    java中提供了对压缩格式的数据流的读写.它们封装到现成的IO 类中,以提供压缩功能.下面我们开始java中压缩文件的使用. 目录导航: 关于压缩的简要说明 GZIP压缩文件的使用 ZIP压缩文件的使 ...