Description

给定一个a*b*c的长方体,定义其表面上两个点的距离为沿着长方体的表面走的最短路径的长度,请找到距离最远的点对,你需要保证找到的两个点里至少有一个是长方体顶点。

Input

第一行包含三个正整数a,b,c(1<=a,b,c<=1000),即长方体的长、宽、高。

Output

输出一行一个实数,即最远点对的距离,与标准答案的绝对或相对误差不超过10^{-8}时会被认为是正确的。
 
首先长方体的八个顶点等价,所以可以任选一个考虑
显然最远点会在和所选顶点不相邻的三个面中的某一个上
枚举这三个面,画出展开图,
设当前面的长宽为a,b,长方体的长宽高为a,b,c,所选顶点与这个面不相邻
建直角系,使展开图中当前面在0<x<a,0<y<b区域
所选顶点在展开图中有意义的位置可以是(0,-c),(-c,0),(a+c,-a),(-b,b+c)之一
二分答案,问题转化为以这四个点为圆心,答案为半径的圆是否覆盖了整个矩形,这是计算几何的经典问题,可以考虑几种情况:
1.一个圆与矩形无交,可以忽略这个圆
2.一个圆包含了矩形,可以直接判定整个矩形被覆盖
3.否则 整个矩形没有被覆盖 当且仅当 存在一个圆,这个圆上存在一个点满足在矩形内且在其余圆外,可以求出圆之间、圆和矩形的交点判断一下
最后对三个面的答案取max
#include<bits/stdc++.h>
typedef double ld;
ld ans=;
void maxs(ld&a,ld b){if(a<b)a=b;}
const ld _0=1e-;
int T,n;
ld xm,ym,x[],y[],r[];
ld dis2(ld x,ld y){return x*x+y*y;}
ld dis(ld x,ld y){return sqrt(x*x+y*y);}
bool out(int w){
return x[w]+r[w]<||x[w]-r[w]>xm||y[w]+r[w]<||y[w]-r[w]>ym;
}
bool in(int w){
ld r2=r[w]*r[w];
return dis2(x[w],y[w])<r2&&dis2(x[w]-xm,y[w])<r2&&
dis2(x[w],y[w]-ym)<r2&&dis2(x[w]-xm,y[w]-ym)<r2;
}
struct ev{
ld x;
int a;
bool operator<(ev w)const{return x<w.x;}
}es[];
const ld pi=acos(-),_2pi=pi*;
ld fix(ld x){
while(x<)x+=_2pi;
while(x>=_2pi)x-=_2pi;
return x;
}
int s,ep;
void cal(ld a,ld b){
ld l=fix(a-b),r=fix(a+b);
if(l>r)++s;
es[ep++]=(ev){l-_0,};
es[ep++]=(ev){r+_0,-};
}
void f(ld a,ld b,ld c){
xm=a,ym=b;
x[]=-c,y[]=;
x[]=,y[]=-c;
x[]=a+c,y[]=-a;
x[]=-b,y[]=b+c;
ld L=,R=a+b+c,M;
while(R-L>1e-){
M=(L+R)/;
for(int i=;i<;++i)r[i]=M;
bool ed=,ed0=;
for(int i=;i<;++i){
if(out(i))continue;
ed0=;
if(in(i))break;
s=,ep=;
for(int j=;j<;++j)if(j!=i){
ld xd=x[j]-x[i],yd=y[j]-y[i];
ld d=dis(xd,yd);
if(r[j]+r[i]<d+_0)continue;
ld a=atan2(yd,xd),b=acos(d/(*r[i]));
cal(a,b);
}
if(x[i]-r[i]<)cal(pi,acos(x[i]/r[i]));
if(x[i]+r[i]>xm)cal(,acos((xm-x[i])/r[i]));
if(y[i]-r[i]<)cal(pi*1.5,acos(y[i]/r[i]));
if(y[i]+r[i]>ym)cal(pi*0.5,acos((ym-y[i])/r[i]));
if(!ep){ed=;goto o;}
std::sort(es,es+ep);
for(int j=;j<ep;++j)if(!(s+=es[j].a)){ed=;goto o;}
oo:;
}
if(!ed0)ed=;
o:;
if(ed)R=M;
else L=M;
}
maxs(ans,L);
}
int main(){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
f(a,b,c);f(b,c,a);f(c,a,b);
printf("%.10f",ans);
return ;
}

bzoj 4885: [Lydsy2017年5月月赛]长方体的更多相关文章

  1. bzoj 4836: [Lydsy2017年4月月赛]二元运算 -- 分治+FFT

    4836: [Lydsy2017年4月月赛]二元运算 Time Limit: 8 Sec  Memory Limit: 128 MB Description 定义二元运算 opt 满足   现在给定一 ...

  2. BZOJ 4881: [Lydsy2017年5月月赛]线段游戏

    4881: [Lydsy2017年5月月赛]线段游戏 Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 164  Solved: 81[Submit][St ...

  3. BZOJ 4883 [Lydsy2017年5月月赛]棋盘上的守卫(最小生成环套树森林)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4883 [题目大意] 在一个n*m的棋盘上要放置若干个守卫. 对于n行来说,每行必须恰好 ...

  4. BZOJ 4884 [Lydsy2017年5月月赛]太空猫(单调DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4884 [题目大意] 太空猫(SpaceCat)是一款画面精致.玩法有趣的休闲游戏, 你 ...

  5. 【BZOJ 4832 】 4832: [Lydsy2017年4月月赛]抵制克苏恩 (期望DP)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 275  Solved: 87 Descripti ...

  6. [补档][Lydsy2017年4月月赛]抵制克苏恩

    [Lydsy2017年4月月赛]抵制克苏恩 题目 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平. 如果你不玩炉石传说,不必担心,小Q同学会告诉你所有相关的细节.炉石传说是这样的一 ...

  7. 【BZOJ4832】[Lydsy2017年4月月赛]抵制克苏恩 概率与期望

    [BZOJ4832][Lydsy2017年4月月赛]抵制克苏恩 Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q同学会告诉 ...

  8. 【BZOJ4883】[Lydsy2017年5月月赛]棋盘上的守卫 KM算法

    [BZOJ4883][Lydsy2017年5月月赛]棋盘上的守卫 Description 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须 ...

  9. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

随机推荐

  1. BZOJ3944: Sum(杜教筛模板)

    BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...

  2. POJ 2528 Mayor's posters(线段树染色问题+离散化)

    http://poj.org/problem?id=2528 题意: 给出一面无限长的墙,现在往墙上依次贴海报,问最后还能看见多少张海报. 题意:这道题目就相当于对x轴染色,然后计算出最后还能看见多少 ...

  3. LA 3942 背单词

    https://vjudge.net/problem/UVALive-3942 题意: 给出一个由S个不同单词组成的字典和一个长字符串.把这个字符串分解成若干个单词的连接,有多少种方法?比如,有4个单 ...

  4. ssh 指定ssh端口号

    ssh -p higgs@192.168.43.1

  5. Java发送带html标签内容的邮件

    package test; import javax.mail.internet.InternetAddress; import javax.mail.internet.MimeMessage; im ...

  6. 定义 S4 泛型函数

    在前面的例子中,我们可以看出 S4 比 S3 更正式,因为 S4 类有类的正式定义.同样, S4 的泛型函数也更加正式.在一个关于形状的例子中,我们定义了一系列具有继承关系的 S4 类,只是继承关系的 ...

  7. Java中wait()和notify()方法的使用

    1. wait方法和notify方法 这两个方法,包括notifyAll方法,都是Object类中的方法.在Java API中,wait方法的定义如下: public final void wait( ...

  8. LeetCode 48

    这种方法首先对原数组取其转置矩阵,然后把每行的数字翻转可得到结果,如下所示(其中蓝色数字表示翻转轴): 1  2  3  1  4  7  7  4  1 4  5  6 -->  2  5   ...

  9. snmpwalk-MIB of S5700-idc-stack

    IF-MIB:.iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescrOID:.1.3.6.1.2.1.2.2.1.2 针 ...

  10. WEB标准以及W3C的理解和认识

    web标准简单来说可以分为结构.表现和行为.其中结构主要是有HTML标签组成.表现即指css样式表,通过css可以是页面的结构标签更具美感.行为是指页面和用户具有一定的交互,同时页面结构或者表现发生变 ...