转自:https://www.cnblogs.com/ysugyl/p/8711205.html

Grid Search:一种调参手段;穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果。其原理就像是在数组里找最大值。(为什么叫网格搜索?以有两个参数的模型为例,参数a有3种可能,参数b有4种可能,把所有可能性列出来,可以表示成一个3*4的表格,其中每个cell就是一个网格,循环过程就像是在每个网格里遍历、搜索,所以叫grid search)

1.简单的网格搜索

from sklearn.datasets import load_iris
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split iris = load_iris()
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=0)
print("Size of training set:{} size of testing set:{}".format(X_train.shape[0],X_test.shape[0])) #### grid search start
best_score = 0
for gamma in [0.001,0.01,0.1,1,10,100]:
for C in [0.001,0.01,0.1,1,10,100]:
svm = SVC(gamma=gamma,C=C)#对于每种参数可能的组合,进行一次训练;
svm.fit(X_train,y_train)
score = svm.score(X_test,y_test)
if score > best_score:#找到表现最好的参数
best_score = score
best_parameters = {'gamma':gamma,'C':C}
#### grid search end print("Best score:{:.2f}".format(best_score))
print("Best parameters:{}".format(best_parameters))

输出:

Size of training set:112 size of testing set:38
Best score:0.973684
Best parameters:{'gamma': 0.001, 'C': 100}

存在的问题:

原始数据集划分成训练集和测试集以后,其中测试集除了用作调整参数,也用来测量模型的好坏;这样做导致最终的评分结果比实际效果要好。(因为测试集在调参过程中,送到了模型里,而我们的目的是将训练模型应用在unseen data上);

解决方法:

对训练集再进行一次划分,分成训练集和验证集,这样划分的结果就是:原始数据划分为3份,分别为:训练集、验证集和测试集;其中训练集用来模型训练,验证集用来调整参数,而测试集用来衡量模型表现好坏。

2.使用验证集调整参数

X_trainval,X_test,y_trainval,y_test = train_test_split(iris.data,iris.target,random_state=0)
X_train,X_val,y_train,y_val = train_test_split(X_trainval,y_trainval,random_state=1)
print("Size of training set:{} size of validation set:{} size of teseting set:{}".format(X_train.shape[0],X_val.shape[0],X_test.shape[0])) best_score = 0.0
for gamma in [0.001,0.01,0.1,1,10,100]:
for C in [0.001,0.01,0.1,1,10,100]:
svm = SVC(gamma=gamma,C=C)
svm.fit(X_train,y_train)
score = svm.score(X_val,y_val)
if score > best_score:
best_score = score
best_parameters = {'gamma':gamma,'C':C}
svm = SVC(**best_parameters) #使用最佳参数,构建新的模型
svm.fit(X_trainval,y_trainval) #使用训练集和验证集进行训练,more data always results in good performance.
test_score = svm.score(X_test,y_test) # evaluation模型评估
print("Best score on validation set:{:.2f}".format(best_score))
print("Best parameters:{}".format(best_parameters))
print("Best score on test set:{:.2f}".format(test_score))

输出:

Size of training set:84 size of validation set:28 size of teseting set:38
Best score on validation set:0.96
Best parameters:{'gamma': 0.001, 'C': 10}
Best score on test set:0.92

然而,这种间的的grid search方法,其最终的表现好坏与初始数据的划分结果有很大的关系,为了处理这种情况,我们采用交叉验证的方式来减少偶然性。

3.使用交叉验证方法调参

from sklearn.model_selection import cross_val_score

best_score = 0.0
for gamma in [0.001,0.01,0.1,1,10,100]:
for C in [0.001,0.01,0.1,1,10,100]:
svm = SVC(gamma=gamma,C=C)
scores = cross_val_score(svm,X_trainval,y_trainval,cv=5) #5折交叉验证
score = scores.mean() #取平均数
if score > best_score:
best_score = score
best_parameters = {"gamma":gamma,"C":C}
svm = SVC(**best_parameters)
svm.fit(X_trainval,y_trainval)
test_score = svm.score(X_test,y_test)
print("Best score on validation set:{:.2f}".format(best_score))
print("Best parameters:{}".format(best_parameters))
print("Score on testing set:{:.2f}".format(test_score))

输出:

Best score on validation set:0.97
Best parameters:{'gamma': 0.01, 'C': 100}
Score on testing set:0.97

交叉验证经常与网格搜索进行结合,作为参数评价的一种方法,这种方法叫做grid search with cross validation。

4.类GridSearchCV综合

from sklearn.model_selection import GridSearchCV

#把要调整的参数以及其候选值 列出来;
param_grid = {"gamma":[0.001,0.01,0.1,1,10,100],
"C":[0.001,0.01,0.1,1,10,100]}
print("Parameters:{}".format(param_grid)) grid_search = GridSearchCV(SVC(),param_grid,cv=5) #实例化一个GridSearchCV类
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=10)
grid_search.fit(X_train,y_train) #训练,找到最优的参数,同时使用最优的参数实例化一个新的SVC estimator。
print("Test set score:{:.2f}".format(grid_search.score(X_test,y_test)))
print("Best parameters:{}".format(grid_search.best_params_))
print("Best score on train set:{:.2f}".format(grid_search.best_score_))

输出:

Parameters:{'gamma': [0.001, 0.01, 0.1, 1, 10, 100], 'C': [0.001, 0.01, 0.1, 1, 10, 100]}
Test set score:0.97
Best parameters:{'C': 10, 'gamma': 0.1}
Best score on train set:0.98

sklearn设计了一个这样的类GridSearchCV,这个类实现了fit,predict,score等方法,被当做了一个estimator,使用fit方法,该过程中:(1)搜索到最佳参数;(2)实例化了一个最佳参数的estimator;

5.总结

Grid Search:一种调优方法,在参数列表中进行穷举搜索,对每种情况进行训练,找到最优的参数;由此可知,这种方法的主要缺点是 比较耗时!

Grid Search学习的更多相关文章

  1. [转载]Grid Search

    [转载]Grid Search 初学机器学习,之前的模型都是手动调参的,效果一般.同学和我说他用了一个叫grid search的方法.可以实现自动调参,顿时感觉非常高级.吃饭的时候想调参的话最差不过也 ...

  2. Comparing randomized search and grid search for hyperparameter estimation

    Comparing randomized search and grid search for hyperparameter estimation Compare randomized search ...

  3. 3.2. Grid Search: Searching for estimator parameters

    3.2. Grid Search: Searching for estimator parameters Parameters that are not directly learnt within ...

  4. Grid search in the tidyverse

    @drsimonj here to share a tidyverse method of grid search for optimizing a model's hyperparameters. ...

  5. How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras

    Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...

  6. grid search 超参数寻优

    http://scikit-learn.org/stable/modules/grid_search.html 1. 超参数寻优方法 gridsearchCV 和  RandomizedSearchC ...

  7. CSS Grid 布局学习笔记

    CSS Grid 布局学习笔记 好久没有写博客了, MDN 上关于 Grid 布局的知识比较零散, 正好根据我这几个月的实践对 CSS Grid 布局做一个总结, 以备查阅. 1. 基础用法 Grid ...

  8. scikit-learn:3.2. Grid Search: Searching for estimator parameters

    參考:http://scikit-learn.org/stable/modules/grid_search.html GridSearchCV通过(蛮力)搜索參数空间(參数的全部可能组合).寻找最好的 ...

  9. Elastic Search 学习之路(三)—— tutorial demo

    一.ElasticSearch tutorial demo example 1. 单机.local.CRUD操作 实现方式: SpringBoot + ElasticSearch 拷贝的小demo,原 ...

随机推荐

  1. oracle客户端免安装配置、64位机器PL/SQL和VS自带的IIS连接问题

    一.oracle客户端免安装配置 1.到oracle官网下载Oracle InstantClient, 把它解压缩到单独目录,例如C:\OracleClient,2. 添加环境变量 ORACLE_HO ...

  2. Spring Framework 官方文档学习(四)之Validation、Data Binding、Type Conversion(一)

    题外话:本篇是对之前那篇的重排版.并拆分成两篇,免得没了看的兴趣. 前言 在Spring Framework官方文档中,这三者是放到一起讲的,但没有解释为什么放到一起.大概是默认了读者都是有相关经验的 ...

  3. Maven------使用maven新建web项目出现问题 项目名称出现红色交叉

    转载: http://wenda.so.com/q/1365963640069173?src=140 解决方法: problems窗口查看到下面错误java compiler level does n ...

  4. 交换a、b的值temp = a; a = b; b = temp;比a = a^b;b = a^b;a = a^b;快

    先看代码,交换a.b的值十亿次 <span style="font-size:14px;"> int a=222; int b=111; int size = 1000 ...

  5. ios开发之--简单动画效果的添加

    记录一个简单的动画效果,自己写的,很简单,仅做记录. 附一个demo的下载地址: https://github.com/hgl753951/hglTest.git 代码如下: 1,准备 BOOL _i ...

  6. 监控之_nrpe

    监控机上安装nagios插件和nrpe(nrpe添加为xinetd服务)   1.添加nagios用户 /usr/sbin/useradd nagios passwd nagios 2.安装nagio ...

  7. RF-template使用

    在测试案例中,可以使用template设置进行数据驱动的测试,template设置方法: 在设置项中填写模板的关键字名称,测试案例本身只能包含template关键字使用的数据: *** Setting ...

  8. JS-匀速运动-运动停止

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. vux 局部注册组件

    在home.vue里面,引入Prop.vue组件: 其中 <child :message="msg"></child>的时候 是这么赋值的: data () ...

  10. jQuery Ajax 全解析(转载)

    本文地址: jQuery Ajax 全解析 本文作者:QLeelulu 转载请标明出处! jQuery确实是一个挺好的轻量级的JS框架,能帮助我们快速的开发JS应用,并在一定程度上改变了我们写Java ...