斯特灵(Stirling)数
http://zh.wikipedia.org/wiki/%E6%96%AF%E7%89%B9%E7%81%B5%E6%95%B0
第一类:n个元素分成k个非空循环排列(环)的方法总数
递推式:s(n+1,k)=s(n,k-1)+n*s(n,k)
解释:考虑第n+1个元素 1、单独形成循环排列,剩下的有s(n,k-1)种方法 2、和别的元素一起形成循环排列,n个元素形成循环排列的方法数是s(n,k),第n+1个可以放在第i个元 素左边,共有n种放法,一共是n*s(n,k)
代码:
memset(str1,,sizeof(str1)) ;
for(int i= ;i<= ;i++)
{
str1[i][i]= ;
for(int j= ;j<i ;j++)
{
str1[i][j]=str1[i-][j-]+(i-)*str1[i-][j] ;
}
}
第二类:n个元素放到k个集合内的方法总数
递推式:s(n,k)=s(n-1,k-1)+k*s(n-1,k)
解释:考虑第n个元素 1、第n个元素单独分一类,则n-1个元素要分成k-1类,有s(n-1,k-1)种方法 2、第n个元素和别的元素放在一起,则n-1个元素有s(n-1,k)种分配方法,此 时第n个元素有k种选择,一共是k*s(n-1,k)
代码:
memset(str2,,sizeof(str2)) ;
for(int i= ;i<=N ;i++)
{
str2[i][i]= ;
for(int j= ;j<i ;j++)
{
str2[i][j]=str2[i-][j-]+j*str2[i-][j] ;
}
}
贝尔数:对于第二类斯特灵数,bell(n)=sigma(s(n,i))(1<=i<=n)
代码:
memset(bell,,sizeof(bell)) ;
for(int i= ;i<=N ;i++)
{
for(int j= ;j<=i ;j++)
{
bell[i]=bell[i]+str2[i][j] ;
}
}
斯特灵(Stirling)数的更多相关文章
- 斯特灵数 (Stirling数)
@维基百科 在组合数学,Stirling数可指两类数,都是由18世纪数学家James Stirling提出的. 第一类 s(4,2)=11 第一类Stirling数是有正负的,其绝对值是个元素的项目分 ...
- cf932E. Team Work(第二类斯特灵数 组合数)
题意 题目链接 Sol 这篇题解写的非常详细 首先要知道第二类斯特灵数的一个性质 \[m^n = \sum_{i = 0}^m C_{n}^i S(n, i) i!\] 证明可以考虑组合意义:\(m^ ...
- HDU4372-Count the Buildings【第一类Stirling数】+【组合数】
<题目链接> <转载于 >>> > 题目大意: N座高楼,高度均不同且为1~N中的数,从前向后看能看到F个,从后向前看能看到B个,问有多少种可能的排列数. 0 ...
- 7-n!的位数(斯特灵公式)
http://acm.hdu.edu.cn/showproblem.php?pid=1018 Big NumberTime Limit: 2000/1000 MS (Java/Others) Memo ...
- lightOJ 1326 Race(第二类Stirling数)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...
- hdu 4372 第一类stirling数的应用/。。。好题
/** 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那 ...
- HDU 3625 Examining the Rooms:第一类stirling数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: 有n个房间,每个房间里放着一把钥匙,对应能开1到n号房间的门. 除了1号门,你可以踹开任 ...
- HDU 4372 Count the Buildings:第一类Stirling数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4372 题意: 有n栋高楼横着排成一排,各自的高度为1到n的一个排列. 从左边看可以看到f栋楼,从右边看 ...
- 整理一点与排列组合有关的问题[组合数 Stirling数 Catalan数]
都是数学题 思维最重要,什么什么数都没用,DP直接乱搞(雾.. 参考LH课件,以及资料:http://daybreakcx.is-programmer.com/posts/17315.html 做到有 ...
随机推荐
- Flask系列之源码分析(二)
应用技术点 python之__setattr__ python之threading.local python之偏函数 flask源码上下文管理 1.综述过程 将请求对象压入栈 1.请求进入 __cal ...
- MongoDB之Replica Set(复制集复制)
MongoDB支持两种复制模式: 主从复制(Master/Slave) 复制集复制(Replica Set) 下面主要记录我在centos虚拟机上安装replica set,主要参考:http://d ...
- F题:等差区间(RMQ||线段树)
原题大意:原题链接 题解链接 给定一个长为n的数组元素和q次区间[l,r]询问,判断区间[l,r]内元素排序后能否构成等差数列 #include<cmath> #include<c ...
- Rails的HashWithIndifferentAccess
ruby 2.0 引入了keyword arguments,方法的参数可以这么声明 def foo(bar: 'default') puts bar end foo # => 'default' ...
- vim tab设置为4个空格
为了vim更好的支持python写代码,修改tab默认4个空格有两种设置方法: 1. vim /etc/vimrc 1 set ts=4 2 set sw=4 2. vim /etc/vimrc 1 ...
- Java实现使用位图生成真值组合
摘要: 使用位图生成真值组合. 难度: 初级. /** * 问题描述: 给定 n 个布尔变量,打印所有真值组合. * 例如, n = 2 时 , 所有真值组合为 (true, false),(tr ...
- SharedObject对象聊天室
本博推荐文章快速导航: Sql Server2005 Transact-SQL 新兵器学习MCAD学习 代码阅读总结 ASP.NET状态管理 DB(数据库)WAPWinFormFlex,Fms aie ...
- 浅谈location对象
简介 Location 对象存储在 Window 对象的 Location 属性中,表示那个窗口中当前显示的文档的 Web 地址.通过Location对象,可以获取URL中的各项信息,调用对象方法也可 ...
- 20135320赵瀚青LINUX第八周学习笔记
赵瀚青原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 概述 本周学习的是linux ...
- 20145326《Java程序设计》实验二Java面向对象程序设计实验报告
20145326<Java程序设计>实验二Java面向对象程序设计实验报告 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S.O. ...