技术在于交流、沟通,本文为博主原创文章转载请注明出处并保持作品的完整性

红黑树,关联式容器底层实现(map set),在使用中基本运用不到,但是还是想了解一下他的运作方式

Red_Black tree是平衡二分搜寻树(balanced binary search tree),它是高度平衡的二叉树,这样有利于search和insert.

红黑树提供遍历,如果如果按正常规则(++iter)遍历,便能获得排序状态

如上图,你会发现返回迭代器头的begin()函数指向的是"5"这个点.end()记录着最大点"15",它永远先走左边后走右边.

如果你遍历上面的红黑树就会得到 5,6,7,8,10,11,12,13,15

但是我们不应该使用红黑树的迭代器改变其元素,如果改变就会破坏原树的结构,但是编程的层面没有禁止(是可以改,但是我们不应该改).

因为rb_tree是为了实现set和map,而map允许元素data的改变,但是map的key不能够改变.

rb_tree提供两种insertion操作:insert_unique()[插入的key是第一无二的,否则插入失败]. insert_equal()[允许key重复] .

先说一下红黑数的基本性质

红黑树的性质:

a.每个节点或是红的,或是黑的

b.根节点是黑色的

c.每个叶节点(NULL)是黑色的

d.如果一个节点是红色的,则它的两个子节点都是黑色的

e.对每个节点,从该节点到其所有后代叶节点的简单路径上,均含有相同数目的黑色节点


Source Code

介绍rb_tree的部分源码

一 数据类

先看红黑树的数据类 _Rb_tree_node_base

    enum _Rb_tree_color { _S_red = false, _S_black = true };//红黑树的颜色 红色0 黑色1

    struct _Rb_tree_node_base
{
typedef _Rb_tree_node_base* _Base_ptr; //节点指针
typedef const _Rb_tree_node_base* _Const_Base_ptr;//const节点指针 _Rb_tree_color _M_color;//颜色
_Base_ptr _M_parent;//父节点
_Base_ptr _M_left;//左节点
_Base_ptr _M_right;//右节点 static _Base_ptr//最小节点,即最左节点
_S_minimum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_left != ) __x = __x->_M_left;//只要左节点不为空就一直向左走,取得最小节点
return __x;
} static _Const_Base_ptr
_S_minimum(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_left != ) __x = __x->_M_left;
return __x;
} static _Base_ptr//最大节点,即最右节点
_S_maximum(_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_right != ) __x = __x->_M_right;
return __x;
} static _Const_Base_ptr
_S_maximum(_Const_Base_ptr __x) _GLIBCXX_NOEXCEPT
{
while (__x->_M_right != ) __x = __x->_M_right;
return __x;
}
};

其子类_Rb_tree_node

    template<typename _Val>//红黑树的节点结构
struct _Rb_tree_node : public _Rb_tree_node_base
{
typedef _Rb_tree_node<_Val>* _Link_type;//节点指针 指向数据节点 #if __cplusplus < 201103L
_Val _M_value_field;//数据类型 _Val*
_M_valptr()
{ return std::__addressof(_M_value_field); }  const _Val*
_M_valptr() const
{ return std::__addressof(_M_value_field); }
#else
__gnu_cxx::__aligned_buffer<_Val> _M_storage;//对齐处理后数据 _Val*
_M_valptr() //返回对应数据的指针
{ return _M_storage._M_ptr(); } const _Val*
_M_valptr() const
{ return _M_storage._M_ptr(); }
#endif
};
std::_addressof()的实现在 move.h中找到其实现 用于取变量和函数的内存地址 
  template<typename _Tp>
inline _Tp*
__addressof(_Tp& __r) _GLIBCXX_NOEXCEPT
{
return reinterpret_cast<_Tp*>
(&const_cast<char&>(reinterpret_cast<const volatile char&>(__r)));
}

volatitle是一种类型修饰符,用它声明的类型变量表示可以被某些编译器未知的因素更改.

比如:操作系统、硬件或者其它线程等。遇到这个关键字声明的变量,编译器对访问该变量的代码就不再进行优化,从而可以提供对特殊地址的稳定访问。

声明时语法:int volatile vInt; 当要求使用 volatile 声明的变量的值的时候,系统总是重新从它所在的内存读取数据,即使它前面的指令刚刚从该处读取过数据。而且读取的数据立刻被保存


二 迭代器 _Rb_tree_iterator

template<typename _Tp>
struct _Rb_tree_iterator
{
typedef _Tp value_type;
typedef _Tp& reference;
typedef _Tp* pointer; typedef bidirectional_iterator_tag iterator_category; //迭代器类型
typedef ptrdiff_t difference_type; //两个迭代器间距离 typedef _Rb_tree_iterator<_Tp> _Self;
typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;//节点指针
typedef _Rb_tree_node<_Tp>* _Link_type;//节点指针
//ctor
_Rb_tree_iterator() _GLIBCXX_NOEXCEPT
: _M_node() { } explicit
_Rb_tree_iterator(_Link_type __x) _GLIBCXX_NOEXCEPT
: _M_node(__x) { } reference
operator*() const _GLIBCXX_NOEXCEPT
{ return *static_cast<_Link_type>(_M_node)->_M_valptr(); }
//操作符重载返回节点指针
pointer
operator->() const _GLIBCXX_NOEXCEPT
{ return static_cast<_Link_type> (_M_node)->_M_valptr(); } _Self&
operator++() _GLIBCXX_NOEXCEPT
{
_M_node = _Rb_tree_increment(_M_node);//这个函数的实现在4.9中没有找到 用一下其他版本的 其实现原理基本相似
return *this;
} _Self
operator++(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _Rb_tree_increment(_M_node);//++操作
return __tmp;
} _Self&
operator--() _GLIBCXX_NOEXCEPT//--也没找到
{
_M_node = _Rb_tree_decrement(_M_node);
return *this;
} _Self
operator--(int) _GLIBCXX_NOEXCEPT
{
_Self __tmp = *this;
_M_node = _Rb_tree_decrement(_M_node);
return __tmp;
} bool
operator==(const _Self& __x) const _GLIBCXX_NOEXCEPT
{ return _M_node == __x._M_node; } bool
operator!=(const _Self& __x) const _GLIBCXX_NOEXCEPT
{ return _M_node != __x._M_node; } _Base_ptr _M_node;
};

operator++

//RB-Tree的后继点
void _M_increment()
{
//the right subtree of node x is not empty
//存在右子树,则找出右子树的最小节点
if (_M_node->_M_right != ) {//如果有右子树
_M_node = _M_node->_M_right;//向右边走
while (_M_node->_M_left != )//往右子树中的左边一直走到底
_M_node = _M_node->_M_left;//最左节点就是后继结点
}
//the right subtree of node x is empty,and the node of x has a successor node y
//没有右子树,但是RB-Tree中节点node存在后继结点
else {
_Base_ptr __y = _M_node->_M_parent;//沿其父节点向上查找
while (_M_node == __y->_M_right) { //若节点是其父节点的右孩子,则向上查找,
_M_node = __y; //一直向上查找,直到“某节点不是其父节点的右孩子”为止
__y = __y->_M_parent;
} if (_M_node->_M_right != __y)//若此时的右子节点不等于此时的父节点
_M_node = __y;//此时的父节点即为解答
//否则此时的node为解答
}
}

operator--

//RB-Tree的前驱节点
void _M_decrement()
{
if (_M_node->_M_color == _S_rb_tree_red &&// 如果是红节点,且
_M_node->_M_parent->_M_parent == _M_node)// 父节点的父节点等于自己
_M_node = _M_node->_M_right; //右子节点即为解答。
/*
以上情况发生于node为header时(亦即node为end()时)。注意,header之右孩子即
mostright,指向整棵树的max节点。
*/
else if (_M_node->_M_left != ) {//若有左孩子节点。左子树的最大值即为前驱节点
_Base_ptr __y = _M_node->_M_left;//向左边走,即令y指向左孩子
while (__y->_M_right != )//y存在右孩子,
__y = __y->_M_right;//一直往右走到底
_M_node = __y;//最后即为解答
}
else {//即非根节点,且没有左孩子节点
_Base_ptr __y = _M_node->_M_parent;//找出父节点
while (_M_node == __y->_M_left) {//node节点是其父节点的左孩子
_M_node = __y;//一直交替上溯
__y = __y->_M_parent;//直到不为左孩子结点
}
_M_node = __y;//此时父节点即为解答
}
}
};

_Rb_tree_impl

template<typename _Key, typename _Val, typename _KeyOfValue,
typename _Compare, typename _Alloc = allocator<_Val> >
class _Rb_tree
{
//先说一下说这五个参数
/*
参数1 key key类型
参数2 val value和key的数据包
参数3 在数据包中取key得方法
参数4 key的排序方法
参数5 分配器
*/
...
protected:
template<typename _Key_compare,
bool _Is_pod_comparator = __is_pod(_Key_compare)>
struct _Rb_tree_impl : public _Node_allocator
{
_Key_compare _M_key_compare;
_Rb_tree_node_base _M_header;
size_type _M_node_count; // Keeps track of size of tree. _Rb_tree_impl()
: _Node_allocator(), _M_key_compare(), _M_header(),
_M_node_count()
{ _M_initialize(); } _Rb_tree_impl(const _Key_compare& __comp, const _Node_allocator& __a)
: _Node_allocator(__a), _M_key_compare(__comp), _M_header(),
_M_node_count()
{ _M_initialize(); } #if __cplusplus >= 201103L
_Rb_tree_impl(const _Key_compare& __comp, _Node_allocator&& __a)
: _Node_allocator(std::move(__a)), _M_key_compare(__comp),
_M_header(), _M_node_count()
{ _M_initialize(); }
#endif private:
void
_M_initialize()
{
this->_M_header._M_color = _S_red;
this->_M_header._M_parent = ;
this->_M_header._M_left = &this->_M_header;
this->_M_header._M_right = &this->_M_header;
}
}; _Rb_tree_impl<_Compare> _M_impl;
...
}

4.9的红黑树源码封装的比较严密,导致我没找到一些函数的实现,那么下面的源码分析,我就以我的学习笔记代替了

// 以下都是全域函式:__rb_tree_rotate_left(), __rb_tree_rotate_right(),
// __rb_tree_rebalance(), __rb_tree_rebalance_for_erase() //新节点必须为红色节点。如果安插处的父节点为红色,就违反了红黑色规则
//此时要旋转和改变颜色 //左旋转
//节点x为左旋转点
inline void
_Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
_Rb_tree_node_base* __y = __x->_M_right;//获取左旋转节点x的右孩子y
__x->_M_right = __y->_M_left;//把y节点的左孩子作为旋转节点x的右孩子
if (__y->_M_left !=)
__y->_M_left->_M_parent = __x;//更新节点y左孩子父节点指针,指向新的父节点x
__y->_M_parent = __x->_M_parent;//y节点替换x节点的位置 //令y完全顶替x的地位(必须将x对其父节点的关系完全接收过来)
if (__x == __root)//若原始位置节点x是根节点
__root = __y;//则y为新的根节点
//否则,若x节点是其父节点的左孩子
else if (__x == __x->_M_parent->_M_left)
__x->_M_parent->_M_left = __y;//则更新节点y为原始x父节点的左孩子
else//若x节点是其父节点的右孩子
__x->_M_parent->_M_right = __y;//则更新节点y为原始x父节点的右孩子
__y->_M_left = __x;//旋转后旋转节点x作为节点y的左孩子
__x->_M_parent = __y;//更新x节点的父节点指针
} //右旋转
//节点x为右旋转点
inline void
_Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
_Rb_tree_node_base* __y = __x->_M_left;//获取右旋转节点x的左孩子y
__x->_M_left = __y->_M_right;//把y节点的右孩子作为旋转节点x的左孩子
if (__y->_M_right != )
__y->_M_right->_M_parent = __x;//更新节点y右孩子父节点指针,指向新的父节点x
__y->_M_parent = __x->_M_parent;//y节点替换x节点的位置 //令y完全顶替x的地位(必须将x对其父节点的关系完全接收过来)
if (__x == __root)//若原始位置节点x是根节点
__root = __y;//则y为新的根节点
//否则,若x节点是其父节点的右孩子
else if (__x == __x->_M_parent->_M_right)
__x->_M_parent->_M_right = __y;//则更新节点y为原始x父节点的右孩子
else//若x节点是其父节点的左孩子
__x->_M_parent->_M_left = __y;//则更新节点y为原始x父节点的左孩子
__y->_M_right = __x;//旋转后旋转节点x作为节点y的右孩子
__x->_M_parent = __y;//更新x节点的父节点指针
} //重新令RB-tree平衡(改变颜色和旋转)
//参数一为新增节点x,参数二为root节点
inline void
_Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
__x->_M_color = _S_rb_tree_red;//新插入的节点必须为红色,这样不会违反性质5.
//若新插入节点不是为RB-Tree的根节点,且其父节点color属性也是红色,即违反了性质4.
//则进入while循环.
//此时根据节点x的父节点x->parent是其祖父节点x->parent->parent的左孩子还是右孩子进行讨论,
//但是左右孩子之间是对称的,所以思想是类似的.
while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) {
//case1:节点x的父节点x->parent是其祖父节点x->parent->parent的左孩子
if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) {
//节点y为x节点的叔叔节点,即是节点x父节点x->parent的兄弟
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;
if (__y && __y->_M_color == _S_rb_tree_red) {//情况1:若其叔叔节点y存在,且为红色
/*
此时x->parent和y都是红色的,解决办法是将x的父节点x->parent和叔叔结点y都着为黑色,
而将x的祖父结点x->parent->parent着为红色,
然后从祖父结点x->parent->parent继续向上判断是否破坏红黑树的性质。
*/
__x->_M_parent->_M_color = _S_rb_tree_black;//将其父节点x->parent改变成黑色
__y->_M_color = _S_rb_tree_black;//将其叔叔节点y改变成黑色
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//将其祖父节点变成红色
//把祖父节点作为当前节点,一直上溯,继续判断是否破坏RB-Tree性质.
__x = __x->_M_parent->_M_parent;
}
else {//若无叔叔节点或者其叔叔节点y为黑色
/*
情况2:x的叔叔节点y是黑色且x是一个右孩子
情况3:x的叔叔节点y是黑色且x是一个左孩子 情况2和情况3中y都是黑色的,通过x是parent[x]的左孩子还是右孩子进行区分的。
情况2中x是右孩子,可以在parent[x]结点将情况2通过左旋转为情况3,使得x变为左孩子。
无论是间接还是直接的通过情况2进入到情况3,x的叔叔y总是黑色的。
在情况3中,将parent[x]着为黑色,parent[parent[x]]着为红色,然后从parent[parent[x]]处进行一次右旋转。
情况2、3修正了对性质4的违反,修正过程不会导致其他的红黑性质被破坏。
*/
if (__x == __x->_M_parent->_M_right) {//若节点x为其父节点x->parent的右孩子
//则以其父节点作为旋转节点
//进行一次左旋转
__x = __x->_M_parent;
_Rb_tree_rotate_left(__x, __root);
//旋转之后,节点x变成其父节点的左孩子
}
__x->_M_parent->_M_color = _S_rb_tree_black;//改变其父节点x->parent颜色
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//改变其祖父节点x->parent->parent颜色
_Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root);//对其祖父节点进行一次右旋转
}
}
//case2:节点x的父节点x->parent是其祖父节点x->parent->parent的右孩子
//这种情况是跟上面的情况(父节点为其祖父节点的左孩子)是对称的.
else {
//节点y为x节点的叔叔节点,即是节点x父节点x->parent的兄弟
_Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
if (__y && __y->_M_color == _S_rb_tree_red) {//若叔叔节点存在,且为红色
__x->_M_parent->_M_color = _S_rb_tree_black;//改变父节点颜色
__y->_M_color = _S_rb_tree_black;//改变叔叔节点颜色
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//改变祖父节点颜色
__x = __x->_M_parent->_M_parent;//上溯祖父节点,判断是否违背RB-Tree的性质
}
else {//若叔叔节点不存在或叔叔节点为黑色
if (__x == __x->_M_parent->_M_left) {//新节点x为其父节点的左孩子
//对其父节点进行一次右旋转
__x = __x->_M_parent;
_Rb_tree_rotate_right(__x, __root);
}
__x->_M_parent->_M_color = _S_rb_tree_black;//改变父节点颜色
__x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;//改变祖父节点颜色
_Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root);//进行一次左旋转
}
}
}
//若新插入节点为根节点,则违反性质2
//只需将其重新赋值为黑色即可
__root->_M_color = _S_rb_tree_black;
} //删除节点
inline _Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* __z,
_Rb_tree_node_base*& __root,
_Rb_tree_node_base*& __leftmost,
_Rb_tree_node_base*& __rightmost)
{
_Rb_tree_node_base* __y = __z;
_Rb_tree_node_base* __x = ;
_Rb_tree_node_base* __x_parent = ;
if (__y->_M_left == ) // __z has at most one non-null child. y == z.
__x = __y->_M_right; // __x might be null.
else
if (__y->_M_right == ) // __z has exactly one non-null child. y == z.
__x = __y->_M_left; // __x is not null.
else { // __z has two non-null children. Set __y to
__y = __y->_M_right; // __z's successor. __x might be null.
while (__y->_M_left != )
__y = __y->_M_left;
__x = __y->_M_right;
}
if (__y != __z) { // relink y in place of z. y is z's successor
__z->_M_left->_M_parent = __y;
__y->_M_left = __z->_M_left;
if (__y != __z->_M_right) {
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
__y->_M_parent->_M_left = __x; // __y must be a child of _M_left
__y->_M_right = __z->_M_right;
__z->_M_right->_M_parent = __y;
}
else
__x_parent = __y;
if (__root == __z)
__root = __y;
else if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __y;
else
__z->_M_parent->_M_right = __y;
__y->_M_parent = __z->_M_parent;
__STD::swap(__y->_M_color, __z->_M_color);
__y = __z;
// __y now points to node to be actually deleted
}
else { // __y == __z
__x_parent = __y->_M_parent;
if (__x) __x->_M_parent = __y->_M_parent;
if (__root == __z)
__root = __x;
else
if (__z->_M_parent->_M_left == __z)
__z->_M_parent->_M_left = __x;
else
__z->_M_parent->_M_right = __x;
if (__leftmost == __z)
if (__z->_M_right == ) // __z->_M_left must be null also
__leftmost = __z->_M_parent;
// makes __leftmost == _M_header if __z == __root
else
__leftmost = _Rb_tree_node_base::_S_minimum(__x);
if (__rightmost == __z)
if (__z->_M_left == ) // __z->_M_right must be null also
__rightmost = __z->_M_parent;
// makes __rightmost == _M_header if __z == __root
else // __x == __z->_M_left
__rightmost = _Rb_tree_node_base::_S_maximum(__x);
}
if (__y->_M_color != _S_rb_tree_red) {
while (__x != __root && (__x == || __x->_M_color == _S_rb_tree_black))
if (__x == __x_parent->_M_left) {
_Rb_tree_node_base* __w = __x_parent->_M_right;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_left(__x_parent, __root);
__w = __x_parent->_M_right;
}
if ((__w->_M_left == ||
__w->_M_left->_M_color == _S_rb_tree_black) &&
(__w->_M_right == ||
__w->_M_right->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_right == ||
__w->_M_right->_M_color == _S_rb_tree_black) {
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_right(__w, __root);
__w = __x_parent->_M_right;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
_Rb_tree_rotate_left(__x_parent, __root);
break;
}
} else { // same as above, with _M_right <-> _M_left.
_Rb_tree_node_base* __w = __x_parent->_M_left;
if (__w->_M_color == _S_rb_tree_red) {
__w->_M_color = _S_rb_tree_black;
__x_parent->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_right(__x_parent, __root);
__w = __x_parent->_M_left;
}
if ((__w->_M_right == ||
__w->_M_right->_M_color == _S_rb_tree_black) &&
(__w->_M_left == ||
__w->_M_left->_M_color == _S_rb_tree_black)) {
__w->_M_color = _S_rb_tree_red;
__x = __x_parent;
__x_parent = __x_parent->_M_parent;
} else {
if (__w->_M_left == ||
__w->_M_left->_M_color == _S_rb_tree_black) {
if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
__w->_M_color = _S_rb_tree_red;
_Rb_tree_rotate_left(__w, __root);
__w = __x_parent->_M_left;
}
__w->_M_color = __x_parent->_M_color;
__x_parent->_M_color = _S_rb_tree_black;
if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
_Rb_tree_rotate_right(__x_parent, __root);
break;
}
}
if (__x) __x->_M_color = _S_rb_tree_black;
}
return __y;
} // Base class to encapsulate the differences between old SGI-style
// allocators and standard-conforming allocators. In order to avoid
// having an empty base class, we arbitrarily move one of rb_tree's
// data members into the base class. //以下是对内存分配的管理
#ifdef __STL_USE_STD_ALLOCATORS // _Base for general standard-conforming allocators.
template <class _Tp, class _Alloc, bool _S_instanceless>
class _Rb_tree_alloc_base {
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }//空间配置器的类型 _Rb_tree_alloc_base(const allocator_type& __a)
: _M_node_allocator(__a), _M_header() {} protected:
typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::allocator_type
_M_node_allocator;
_Rb_tree_node<_Tp>* _M_header;//定义头指针,指向Rb_tree的根节点 _Rb_tree_node<_Tp>* _M_get_node() //分配一个节点空间
{ return _M_node_allocator.allocate(); }
void _M_put_node(_Rb_tree_node<_Tp>* __p) //释放一个节点空间
{ _M_node_allocator.deallocate(__p, ); }
}; // Specialization for instanceless allocators.
template <class _Tp, class _Alloc>
class _Rb_tree_alloc_base<_Tp, _Alloc, true> {
public:
typedef typename _Alloc_traits<_Tp, _Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return allocator_type(); } _Rb_tree_alloc_base(const allocator_type&) : _M_header() {} protected:
_Rb_tree_node<_Tp>* _M_header; typedef typename _Alloc_traits<_Rb_tree_node<_Tp>, _Alloc>::_Alloc_type
_Alloc_type; _Rb_tree_node<_Tp>* _M_get_node()
{ return _Alloc_type::allocate(); }
void _M_put_node(_Rb_tree_node<_Tp>* __p)
{ _Alloc_type::deallocate(__p, ); }
}; //RB-Tree基本结构,即基类,继承_Rb_tree_alloc_base
template <class _Tp, class _Alloc>
struct _Rb_tree_base
: public _Rb_tree_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
typedef _Rb_tree_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type; _Rb_tree_base(const allocator_type& __a)
: _Base(__a) { _M_header = _M_get_node(); }
~_Rb_tree_base() { _M_put_node(_M_header); } }; #else /* __STL_USE_STD_ALLOCATORS */ //RB-Tree基本结构,即基类,没有继承_Rb_tree_alloc_base
template <class _Tp, class _Alloc>
struct _Rb_tree_base
{
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); } _Rb_tree_base(const allocator_type&)
: _M_header() { _M_header = _M_get_node(); }
~_Rb_tree_base() { _M_put_node(_M_header); } protected:
_Rb_tree_node<_Tp>* _M_header;//定义头指针节点,指向根节点 typedef simple_alloc<_Rb_tree_node<_Tp>, _Alloc> _Alloc_type; _Rb_tree_node<_Tp>* _M_get_node()
{ return _Alloc_type::allocate(); }
void _M_put_node(_Rb_tree_node<_Tp>* __p)
{ _Alloc_type::deallocate(__p, ); }
}; #endif /* __STL_USE_STD_ALLOCATORS */ //RB-Tree类的定义,继承基类_Rb_tree_base
template <class _Key, class _Value, class _KeyOfValue, class _Compare,
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Value) >
class _Rb_tree : protected _Rb_tree_base<_Value, _Alloc> {
typedef _Rb_tree_base<_Value, _Alloc> _Base;
protected:
typedef _Rb_tree_node_base* _Base_ptr;
typedef _Rb_tree_node<_Value> _Rb_tree_node;
typedef _Rb_tree_Color_type _Color_type;
public:
typedef _Key key_type;
typedef _Value value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef _Rb_tree_node* _Link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type; typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); } protected:
#ifdef __STL_USE_NAMESPACES
using _Base::_M_get_node;
using _Base::_M_put_node;
using _Base::_M_header;//这里是指向根节点的节点指针
#endif /* __STL_USE_NAMESPACES */ protected: //创建节点并对其初始化为x
_Link_type _M_create_node(const value_type& __x)
{
_Link_type __tmp = _M_get_node();//分配一个节点空间
__STL_TRY {
construct(&__tmp->_M_value_field, __x);//构造对象
}
__STL_UNWIND(_M_put_node(__tmp));
return __tmp;
} //复制节点的值和颜色
_Link_type _M_clone_node(_Link_type __x)
{
_Link_type __tmp = _M_create_node(__x->_M_value_field);
__tmp->_M_color = __x->_M_color;
__tmp->_M_left = ;
__tmp->_M_right = ;
return __tmp;
} //释放节点
void destroy_node(_Link_type __p)
{
destroy(&__p->_M_value_field);//析构对象
_M_put_node(__p);//释放节点空间
} protected:
size_type _M_node_count; // keeps track of size of tree
_Compare _M_key_compare; //节点键值比较准则 //下面三个函数是用来获取header的成员
_Link_type& _M_root() const
{ return (_Link_type&) _M_header->_M_parent; }
_Link_type& _M_leftmost() const
{ return (_Link_type&) _M_header->_M_left; }
_Link_type& _M_rightmost() const
{ return (_Link_type&) _M_header->_M_right; } //下面六个函数获取节点x的成员
static _Link_type& _S_left(_Link_type __x)
{ return (_Link_type&)(__x->_M_left); }
static _Link_type& _S_right(_Link_type __x)
{ return (_Link_type&)(__x->_M_right); }
static _Link_type& _S_parent(_Link_type __x)
{ return (_Link_type&)(__x->_M_parent); }
static reference _S_value(_Link_type __x)
{ return __x->_M_value_field; }
static const _Key& _S_key(_Link_type __x)
{ return _KeyOfValue()(_S_value(__x)); }
static _Color_type& _S_color(_Link_type __x)
{ return (_Color_type&)(__x->_M_color); } //跟上面六个函数功能相同,不同的是参数类型不同,一个是基类指针,一个是派生类指针
static _Link_type& _S_left(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_left); }
static _Link_type& _S_right(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_right); }
static _Link_type& _S_parent(_Base_ptr __x)
{ return (_Link_type&)(__x->_M_parent); }
static reference _S_value(_Base_ptr __x)
{ return ((_Link_type)__x)->_M_value_field; }
static const _Key& _S_key(_Base_ptr __x)
{ return _KeyOfValue()(_S_value(_Link_type(__x)));}
static _Color_type& _S_color(_Base_ptr __x)
{ return (_Color_type&)(_Link_type(__x)->_M_color); } //RB-Tree的极小值
static _Link_type _S_minimum(_Link_type __x)
{ return (_Link_type) _Rb_tree_node_base::_S_minimum(__x); } //RB-Tree的极大值
static _Link_type _S_maximum(_Link_type __x)
{ return (_Link_type) _Rb_tree_node_base::_S_maximum(__x); } public:
//迭代器
typedef _Rb_tree_iterator<value_type, reference, pointer> iterator;
typedef _Rb_tree_iterator<value_type, const_reference, const_pointer>
const_iterator; #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_bidirectional_iterator<iterator, value_type, reference,
difference_type>
reverse_iterator;
typedef reverse_bidirectional_iterator<const_iterator, value_type,
const_reference, difference_type>
const_reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ private:
//类的私有成员函数,在后面定义
iterator _M_insert(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
_Link_type _M_copy(_Link_type __x, _Link_type __p);
void _M_erase(_Link_type __x); public:
// allocation/deallocation
_Rb_tree()
: _Base(allocator_type()), _M_node_count(), _M_key_compare()
{ _M_empty_initialize(); } _Rb_tree(const _Compare& __comp)
: _Base(allocator_type()), _M_node_count(), _M_key_compare(__comp)
{ _M_empty_initialize(); } _Rb_tree(const _Compare& __comp, const allocator_type& __a)
: _Base(__a), _M_node_count(), _M_key_compare(__comp)
{ _M_empty_initialize(); } _Rb_tree(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
: _Base(__x.get_allocator()),
_M_node_count(), _M_key_compare(__x._M_key_compare)
{
if (__x._M_root() == )
_M_empty_initialize();
else {
_S_color(_M_header) = _S_rb_tree_red;
_M_root() = _M_copy(__x._M_root(), _M_header);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
}
_M_node_count = __x._M_node_count;
}
~_Rb_tree() { clear(); }
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x); private:
//初始化header
void _M_empty_initialize() {
_S_color(_M_header) = _S_rb_tree_red; // used to distinguish header from
// __root, in iterator.operator++
_M_root() = ;
_M_leftmost() = _M_header;
_M_rightmost() = _M_header;
} public:
// accessors:
_Compare key_comp() const { return _M_key_compare; }
iterator begin() { return _M_leftmost(); }//RB-Tree的起始迭代器为最小节点
const_iterator begin() const { return _M_leftmost(); }
iterator end() { return _M_header; }//RB-Tree的结束迭代器为header
const_iterator end() const { return _M_header; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
//RB-Tree是否为空
bool empty() const { return _M_node_count == ; }
//RB-Tree节点数
size_type size() const { return _M_node_count; }
size_type max_size() const { return size_type(-); } //交换两棵RB-Tree的内容
//RB-tree只有三个表现成员,所以两棵RB-Tree交换内容时,只需互换这3个成员
void swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __t) {
__STD::swap(_M_header, __t._M_header);
__STD::swap(_M_node_count, __t._M_node_count);
__STD::swap(_M_key_compare, __t._M_key_compare);
} public:
// insert/erase
//插入节点,但是节点值必须唯一
pair<iterator,bool> insert_unique(const value_type& __x);
//插入节点,节点值可以与当前RB-Tree节点值相等
iterator insert_equal(const value_type& __x); //在指定位置插入节点
iterator insert_unique(iterator __position, const value_type& __x);
iterator insert_equal(iterator __position, const value_type& __x); #ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void insert_unique(_InputIterator __first, _InputIterator __last);
template <class _InputIterator>
void insert_equal(_InputIterator __first, _InputIterator __last);
#else /* __STL_MEMBER_TEMPLATES */
void insert_unique(const_iterator __first, const_iterator __last);
void insert_unique(const value_type* __first, const value_type* __last);
void insert_equal(const_iterator __first, const_iterator __last);
void insert_equal(const value_type* __first, const value_type* __last);
#endif /* __STL_MEMBER_TEMPLATES */ //删除节点
void erase(iterator __position);
size_type erase(const key_type& __x);
void erase(iterator __first, iterator __last);
void erase(const key_type* __first, const key_type* __last);
//清除RB-Tree
void clear() {
if (_M_node_count != ) {
_M_erase(_M_root());
_M_leftmost() = _M_header;
_M_root() = ;
_M_rightmost() = _M_header;
_M_node_count = ;
}
} public:
// set operations:
iterator find(const key_type& __x);
const_iterator find(const key_type& __x) const;
size_type count(const key_type& __x) const;
iterator lower_bound(const key_type& __x);
const_iterator lower_bound(const key_type& __x) const;
iterator upper_bound(const key_type& __x);
const_iterator upper_bound(const key_type& __x) const;
pair<iterator,iterator> equal_range(const key_type& __x);
pair<const_iterator, const_iterator> equal_range(const key_type& __x) const; public:
// Debugging.
bool __rb_verify() const;
}; //以下是操作符重载
//重载operator==运算符,使用的是STL泛型算法
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator==(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
return __x.size() == __y.size() &&
//STL的算法equal(__x.begin(), __x.end(), __y.begin());
equal(__x.begin(), __x.end(), __y.begin());
}
//重载operator<运算符,使用的是STL泛型算法
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator<(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
} #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator!=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__x == __y);
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator>(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return __y < __x;
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator<=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__y < __x);
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline bool
operator>=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y) {
return !(__x < __y);
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline void
swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
__x.swap(__y);
} #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
{
if (this != &__x) {
// Note that _Key may be a constant type.
clear();
_M_node_count = ;
_M_key_compare = __x._M_key_compare;
if (__x._M_root() == ) {
_M_root() = ;
_M_leftmost() = _M_header;
_M_rightmost() = _M_header;
}
else {
_M_root() = _M_copy(__x._M_root(), _M_header);
_M_leftmost() = _S_minimum(_M_root());
_M_rightmost() = _S_maximum(_M_root());
_M_node_count = __x._M_node_count;
}
}
return *this;
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::_M_insert(_Base_ptr __x_, _Base_ptr __y_, const _Value& __v)
{//参数x_为新值插入点,参数y_为插入点之父节点,参数v 为新值
_Link_type __x = (_Link_type) __x_;
_Link_type __y = (_Link_type) __y_;
_Link_type __z; if (__y == _M_header || __x != ||
_M_key_compare(_KeyOfValue()(__v), _S_key(__y))) {
__z = _M_create_node(__v);//创建值为v的节点z
_S_left(__y) = __z; // also makes _M_leftmost() = __z
// when __y == _M_header
if (__y == _M_header) {
_M_root() = __z;
_M_rightmost() = __z;
}
else if (__y == _M_leftmost())//若y为最左节点
_M_leftmost() = __z; // maintain _M_leftmost() pointing to min node
}
else {
__z = _M_create_node(__v);
_S_right(__y) = __z;
if (__y == _M_rightmost())
_M_rightmost() = __z; // maintain _M_rightmost() pointing to max node
}
_S_parent(__z) = __y;//设定新节点的父节点
_S_left(__z) = ;//设定新节点的左孩子
_S_right(__z) = ;//设定新节点的右孩子
_Rb_tree_rebalance(__z, _M_header->_M_parent);//调整RB-Tree使其满足性质
++_M_node_count;//节点数增加1
return iterator(__z);//返回新节点迭代器
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::insert_equal(const _Value& __v)
{
_Link_type __y = _M_header;
_Link_type __x = _M_root();//从根节点开始
while (__x != ) {//从根节点开始,往下寻找合适插入点
__y = __x;
//判断新插入节点值与当前节点x值的大小,以便判断往x的左边走还是往右边走
__x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ?
_S_left(__x) : _S_right(__x);
}
return _M_insert(__x, __y, __v);
} // 安插新值;节点键值不允许重复,若重复则安插无效。
// 注意,传回值是个pair,第一元素是个 RB-tree 迭代器,指向新增节点,
// 第二元素表示安插成功与否。
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
bool>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::insert_unique(const _Value& __v)
{
_Link_type __y = _M_header;
_Link_type __x = _M_root();//从根节点开始
bool __comp = true;
while (__x != ) {//从根节点开始,往下寻找合适插入点
__y = __x;
//判断新插入节点值与当前节点x值的大小,以便判断往x的左边走还是往右边走
__comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x));
__x = __comp ? _S_left(__x) : _S_right(__x);
}
//离开while循环之后,y所指即为安插点的父节点,x必为叶子节点
iterator __j = iterator(__y);//令迭代器j指向插入节点之父节点y
if (__comp)//若为真
if (__j == begin())//若插入点之父节点为最左节点
return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
else//否则(插入点之父节点不在最左节点)
--__j;//调整j
// 小于新值(表示遇「小」,将安插于右侧)
if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v)))
return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
//若运行到这里,表示键值有重复,不应该插入
return pair<iterator,bool>(__j, false);
} template <class _Key, class _Val, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>
::insert_unique(iterator __position, const _Val& __v)
{
if (__position._M_node == _M_header->_M_left) { // begin()
if (size() > &&
_M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
else
return insert_unique(__v).first;
} else if (__position._M_node == _M_header) { // end()
if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v)))
return _M_insert(, _M_rightmost(), __v);
else
return insert_unique(__v).first;
} else {
iterator __before = __position;
--__before;
if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v))
&& _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node))) {
if (_S_right(__before._M_node) == )
return _M_insert(, __before._M_node, __v);
else
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
} else
return insert_unique(__v).first;
}
} template <class _Key, class _Val, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>
::insert_equal(iterator __position, const _Val& __v)
{
if (__position._M_node == _M_header->_M_left) { // begin()
if (size() > &&
!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)))
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
else
return insert_equal(__v);
} else if (__position._M_node == _M_header) {// end()
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost())))
return _M_insert(, _M_rightmost(), __v);
else
return insert_equal(__v);
} else {
iterator __before = __position;
--__before;
if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))
&& !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v))) {
if (_S_right(__before._M_node) == )
return _M_insert(, __before._M_node, __v);
else
return _M_insert(__position._M_node, __position._M_node, __v);
// first argument just needs to be non-null
} else
return insert_equal(__v);
}
} #ifdef __STL_MEMBER_TEMPLATES template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
template<class _II>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_equal(_II __first, _II __last)
{
for ( ; __first != __last; ++__first)
insert_equal(*__first);
} template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
template<class _II>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_unique(_II __first, _II __last) {
for ( ; __first != __last; ++__first)
insert_unique(*__first);
} #else /* __STL_MEMBER_TEMPLATES */ template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_equal(const _Val* __first, const _Val* __last)
{
for ( ; __first != __last; ++__first)
insert_equal(*__first);
} template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_equal(const_iterator __first, const_iterator __last)
{
for ( ; __first != __last; ++__first)
insert_equal(*__first);
} template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void
_Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_unique(const _Val* __first, const _Val* __last)
{
for ( ; __first != __last; ++__first)
insert_unique(*__first);
} template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_unique(const_iterator __first, const_iterator __last)
{
for ( ; __first != __last; ++__first)
insert_unique(*__first);
} #endif /* __STL_MEMBER_TEMPLATES */ template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(iterator __position)
{
_Link_type __y =
(_Link_type) _Rb_tree_rebalance_for_erase(__position._M_node,
_M_header->_M_parent,
_M_header->_M_left,
_M_header->_M_right);
destroy_node(__y);
--_M_node_count;
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::erase(const _Key& __x)
{
pair<iterator,iterator> __p = equal_range(__x);
size_type __n = ;
distance(__p.first, __p.second, __n);
erase(__p.first, __p.second);
return __n;
} template <class _Key, class _Val, class _KoV, class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type
_Rb_tree<_Key,_Val,_KoV,_Compare,_Alloc>
::_M_copy(_Link_type __x, _Link_type __p)
{
// structural copy. __x and __p must be non-null.
_Link_type __top = _M_clone_node(__x);
__top->_M_parent = __p; __STL_TRY {
if (__x->_M_right)
__top->_M_right = _M_copy(_S_right(__x), __top);
__p = __top;
__x = _S_left(__x); while (__x != ) {
_Link_type __y = _M_clone_node(__x);
__p->_M_left = __y;
__y->_M_parent = __p;
if (__x->_M_right)
__y->_M_right = _M_copy(_S_right(__x), __y);
__p = __y;
__x = _S_left(__x);
}
}
__STL_UNWIND(_M_erase(__top)); return __top;
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::_M_erase(_Link_type __x)
{
// erase without rebalancing
while (__x != ) {
_M_erase(_S_right(__x));
_Link_type __y = _S_left(__x);
destroy_node(__x);
__x = __y;
}
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(iterator __first, iterator __last)
{
if (__first == begin() && __last == end())
clear();
else
while (__first != __last) erase(__first++);
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(const _Key* __first, const _Key* __last)
{
while (__first != __last) erase(*__first++);
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k)
{
_Link_type __y = _M_header; // Last node which is not less than __k.
_Link_type __x = _M_root(); // Current node. while (__x != )
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x); iterator __j = iterator(__y);
return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
end() : __j;
} //查找RB树中是否有键值为k的节点
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */ while (__x != ) {
if (!_M_key_compare(_S_key(__x), __k))//若k比当前节点x键值小
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x);
}
const_iterator __j = const_iterator(__y);
return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
end() : __j;
} //计算RB树中键值为k的节点的个数
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::count(const _Key& __k) const
{
pair<const_iterator, const_iterator> __p = equal_range(__k);
size_type __n = ;
distance(__p.first, __p.second, __n);
return __n;
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::lower_bound(const _Key& __k)
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */ while (__x != )
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x); return iterator(__y);
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::lower_bound(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is not less than __k. */
_Link_type __x = _M_root(); /* Current node. */ while (__x != )
if (!_M_key_compare(_S_key(__x), __k))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x); return const_iterator(__y);
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::upper_bound(const _Key& __k)
{
_Link_type __y = _M_header; /* Last node which is greater than __k. */
_Link_type __x = _M_root(); /* Current node. */ while (__x != )
if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x); return iterator(__y);
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::upper_bound(const _Key& __k) const
{
_Link_type __y = _M_header; /* Last node which is greater than __k. */
_Link_type __x = _M_root(); /* Current node. */ while (__x != )
if (_M_key_compare(__k, _S_key(__x)))
__y = __x, __x = _S_left(__x);
else
__x = _S_right(__x); return const_iterator(__y);
} template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
inline
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::equal_range(const _Key& __k)
{
return pair<iterator, iterator>(lower_bound(__k), upper_bound(__k));
} template <class _Key, class _Value, class _KoV, class _Compare, class _Alloc>
inline
pair<typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator,
typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator>
_Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>
::equal_range(const _Key& __k) const
{
return pair<const_iterator,const_iterator>(lower_bound(__k),
upper_bound(__k));
} //计算从 node 至 root路径中的黑节点数量
inline int
__black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root)
{
if (__node == )
return ;
else {
int __bc = __node->_M_color == _S_rb_tree_black ? : ;//若节点node为黑色,则bc为1
if (__node == __root)//判断node是否为根节点
return __bc;
else
return __bc + __black_count(__node->_M_parent, __root);//递归调用
}
} //验证己生这棵树是否符合RB树条件
template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
bool _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
{
//空树
if (_M_node_count == || begin() == end())
return _M_node_count == && begin() == end() &&
_M_header->_M_left == _M_header && _M_header->_M_right == _M_header; //最左节点到根节点的黑色节点数
int __len = __black_count(_M_leftmost(), _M_root());
//一下走访整个RB树,针对每个节点(从最小到最大)……
for (const_iterator __it = begin(); __it != end(); ++__it) {
_Link_type __x = (_Link_type) __it._M_node;
_Link_type __L = _S_left(__x);
_Link_type __R = _S_right(__x); if (__x->_M_color == _S_rb_tree_red)//违背性质4
//如果一个节点是红色的,则它的两个孩子节点都是黑色的。
if ((__L && __L->_M_color == _S_rb_tree_red) ||
(__R && __R->_M_color == _S_rb_tree_red))
return false; //以下是违背二叉查找树性质
//节点的左孩子节点键值小于该节点键值
//节点的右孩子节点键值大于该节点键值
if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
return false;
if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
return false; //[叶子结点到root]路径内的黑色节点数,与[最左节点至root]路径内的黑色节点不同。不符合RB树要求
//违背性质5
if (!__L && !__R && __black_count(__x, _M_root()) != __len)
return false;
} if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
return false; // 最左节点不为最小节点,不符合二叉查找树的要求
if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
return false;// 最右节点不为最大节点,不符不符合二叉查找树的要求 return true;

参考<<侯捷STL源码剖析>>

STL标准库-容器-rb_tree的更多相关文章

  1. STL标准库-容器-set与map

    STL标准库-容器-set与multiset C++的set https://www.cnblogs.com/LearningTheLoad/p/7456024.html STL标准库-容器-map和 ...

  2. STL标准库-容器-set与multiset

    技术在于交流.沟通,转载请注明出处并保持作品的完整性. set与multiset关联容器 结构如下 set是一种关联容器,key即value,value即key.它是自动排序,排序特点依据key se ...

  3. STL标准库-容器-deque

    技术在于交流.沟通,本文为博主原创文章转载请注明出处并保持作品的完整性. deque双向开口可进可出的容器 我们知道连续内存的容器不能随意扩充,因为这样容易扩充别人那去 deque却可以,它创造了内存 ...

  4. STL标准库-容器-vector

    技术在于交流.沟通,本文为博主原创文章转载请注明出处并保持作品的完整性. 向量容器vector是一个动态数组,内存连续,它是动态分配内存,且每次扩张的原来的二倍. 他的结构如下 一 定义 vector ...

  5. STL标准库-容器-list

    技术在于交流.沟通,本文为博主原创文章转载请注明出处并保持作品的完整性. list 表示非连续的内存区域,并通过一对指向首尾元素的指针双向链接起来,从而允许向前和向后两个方向进行遍历.在list 的任 ...

  6. STL标准库-容器适配器

    技术在于交流.沟通,本文为博主原创文章转载请注明出处并保持作品的完整性 上一节介绍了仿函数适配器,这节主要介绍容器适配器和迭代器适配器的概念,其实容器适配器和迭代器其适配器就是封装了一些其他class ...

  7. STL标准库-容器-unordered_set

    技术在于交流.沟通,本文为博主原创文章转载请注明出处并保持作品的完整性 unordered_set与与unordered_map相似,这次主要介绍unordered_set unordered_set ...

  8. STL标准库-容器-map和multimap

    技术在于交流.沟通,本文为博主原创文章转载请注明出处并保持作品的完整性 map与multimap为关联容器,结构如下 map底层实现依然是rb_tree 他的data可以改,但是key不能改,因此ma ...

  9. STL标准库-容器-deque 双端队列

    头文件: #include<deque> 常用操作: https://www.cnblogs.com/LearningTheLoad/p/7450948.html

随机推荐

  1. wget全站抓取命令

    wget -r -p -np -k http://www.freebuf.com/ 忽视,避开robots.txt,加一个-e robots=off 用wget避开robots.txt的下载限制 wg ...

  2. 菜单和按钮-EasyUI Menu 菜单、EasyUI Linkbutton 链接按钮、EasyUI Menubutton 菜单按钮、EasyUI Splitbutton 分割按钮

    EasyUI Menu 菜单 通过 $.fn.menu.defaults 重写默认的 defaults. 菜单(Menu)通常用于上下文菜单.它是创建其他菜单组件(比如:menubutton.spli ...

  3. Linux下编译安装Nginx1.12

    [准备工作] 所有操作需要在root用户下 本机测试案例系统信息:centos7.3 安装路径:/usr/local/nginx [安装Nginx] 先安装如下依赖包 $ yum install gc ...

  4. POJ1061:青蛙的约会+POJ2115C Looooops+UVA10673Play with Floor and Ceil(扩展欧几里得)

    http://poj.org/problem?id=1061 第一遍的写法: #include <iostream> #include <stdio.h> #include & ...

  5. 为什么要同时重写equals和hashcode

    原文地址https://blog.csdn.net/tiantiandjava/article/details/46988461 原文地址https://blog.csdn.net/lijiecao0 ...

  6. 26. Remove Duplicates from Sorted Array(删除排序数组中的重复元素,利用排序的特性,比较大小)

      Given a sorted array, remove the duplicates in-place such that each element appear only once and r ...

  7. nmon监控Linux服务器系统资源

    本文转自:http://www.cnblogs.com/hyzhou/archive/2011/12/29/2305860.html 在实际的测试过程中,Loadrunner监控Linux系统资源不太 ...

  8. 20155201 2016-2017-2 《Java程序设计》第八周学习总结

    20155201 2016-2017-2 <Java程序设计>第八周学习总结 教材学习内容总结 第十四章 NIO与NIO2 相对于串流输入/输出使用InputSteam,OutputStr ...

  9. 20145204《Java程序设计》第5周学习总结

    20145204<Java程序设计>第5周学习总结 教材学习内容总结 语法与继承构架 我们之前接触到的C通常都是将程序流程和错误处理混在一起,在编写程序的时候必须考虑可能出现的错误并提前做 ...

  10. 20172305 2018-2019-1 《Java软件结构与数据结构》第二周学习总结

    20172305 2018-2019-1 <Java软件结构与数据结构>第二周学习总结 教材学习内容总结 本周内容主要为书第三章和第四章的内容: 第三章(以数组来替代栈的作用) 集合(聚集 ...