J - Judge(快速幂)(同余定理)
Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%lld & %llu
Description
Ocean从影视城回来后,吃了一个放大果实(恶魔果实的一种),高呼:“海贼王に、俺はなる!”
Ocean每使用一次能力,就可以将一个物品的价值放大$x$倍(原价值乘以$x$)。
但是哪有这么好的事情?
物品的价值是有限度的,姑且认为物品的价值上界为$M$。
如果经过放大后物品的价值大于或者等于$M$,那么该物品价值将恒定以$M$的值减少,直到小于$M$为止。
比如价值为$19,M = 6$:要减少$3$次$M$,即$19 - 6 = 13,13 - 6 = 7,7 - 6 = 1 < 6。$
假设物品初始的价值为$1$,Ocean会对该物品使用$N$次能力。
他想知道经过$N$次放大之后,物品的价值是否大于$Y$?
Input
每组数据依次输入四个整数$x,N,M,Y,$分别代表上面提到的信息。
注:$1 <= T <= 100000,1 <= x, N <= 10^9,1 <= M <= 10^9,|Y| <= 2 * 10^9。$
Output
Sample Input
2
2 3 5 4
3 10 7 3
Sample Output
NO
YES
Hint
对第一组测试数据,
第一次放大后物品价值为$2,2 < 5,$不减少。
第二次放大后物品价值为$4,4 < 5,$不减少。
第三次放大后物品价值为$8,8 > 5,$每次减少$5$,则$8 - 5 = 3 < 5$合法。
最后价值为$3,3 < 4。$
真的不懂当时自己明明知道方法,但是就是提交不上去,还是自己的基础知识没有掌握好。同余定理没有掌握好。
#include<stdio.h> int main()
{
int T;
scanf("%d",&T);
while(T--)
{
long long t,x;
int n,m,y;
t=;
scanf("%lld%d%d%d",&x,&n,&m,&y);
while(n!=)
{
if(n%) //这里的快速幂知识,和我记的模板并不一样,他是
t=(t*x)%m; //经过了自己的理解了的模板,我现在还没有到这一步
x=(x*x)%m;
n=n/; //用到了同余定理
}
if(t>y) printf("YES\n");
else printf("NO\n");
}
return ;
}
同余定理的另一种表述方式
如果经过放大后物品的价值大于或者等于$M$,那么该物品价值将恒定以$M$的值减少,直到小于$M$为止。
比如价值为$19,M = 6$:要减少$3$次$M$,即$19 - 6 = 13,13 - 6 = 7,7 - 6 = 1 < 6。$
J - Judge(快速幂)(同余定理)的更多相关文章
- 洛谷 P1226 【模板】快速幂||取余运算
题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...
- hdu1061Rightmost Digit(快速幂取余)
Rightmost Digit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- LightOJ - 1282 - Leading and Trailing(数学技巧,快速幂取余)
链接: https://vjudge.net/problem/LightOJ-1282 题意: You are given two integers: n and k, your task is to ...
- 洛谷P1226 【模板】快速幂||取余运算
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 S1: ...
- LuoguP1226 【模板】快速幂||取余运算
题目链接:https://www.luogu.org/problemnew/show/P1226 第一次学快速幂,将别人对快速幂原理的解释简要概括一下: 计算a^b时,直接乘的话计算次数为b,而快速幂 ...
- hdu4767_Bell_矩阵快速幂+中国剩余定理
2013长春赛区网络赛的1009题 比赛的时候这道题英勇的挂掉了,原因是写错了一个系数,有时候粗心比脑残更可怕 本题是关于Bell数,关于Bell数的详情请见维基:http://en.wikipedi ...
- 题解 P1226 【【模板】快速幂||取余运算】
1.题目分析 原题 本题在于快速幂的使用,以及对long long的应用问题. 2.解题思路 快速幂 求幂常见用法: int pow(int a,int b) { int ans; for(int i ...
- [每日一题2020.06.15]P1226 【模板】快速幂取余运算
我是题目 快速幂就是快速求 \(a^b\)的一种算法 快速幂 思想 : 比如我要求 \(6^9\) 首先将幂转化为二进制形式 : \[6^9 = 6^{1001} \tag{1} \] 可以得到 : ...
- 【模板】快速幂&取余运算
输入\(b\),\(p\),\(k\)的值,求\(b^p mod k\)的值.其中\(b\),\(p\),\(k^2\)为长整型数. 1.普通做法 \(print\) \(pow(b,p)\)\(mo ...
随机推荐
- 迷你MVVM框架 avalonjs 学习教程3、绑定属性与扫描机制
在MVVM框架中,你都会看到页面定了许多奇怪的属性,比如knockout的data-☆,angular的ng-☆,avalon的ms-☆,此外还有一些只写文本节点上的双花括号,它们统称为指令.ms-☆ ...
- docker国内registry
cat /etc/docker/daemon.json {"registry-mirrors": ["http://4d6b2eb7.m.daocloud.io" ...
- 79. Word Search (Array; DFS,Back-Track)
Given a 2D board and a word, find if the word exists in the grid. The word can be constructed from l ...
- 第六章 Windows应用程序对键盘与鼠标的响应 P121 6-8
基于键盘与鼠标应用的程序设计 一.实验目的 1.掌握键盘与鼠标在应用程序中的消息响应机制. 二.实验内容及步骤 实验任务 1.熟悉键盘的消息响应: 2.熟悉鼠标的消息响应: 实验内容 设计一个窗口 ...
- 安装python-empy
sudo python setup.py install
- asp.net网站全局控制文件内注册事件
在管理ASP.NET网站的时候,有时会对网站整体做出控制,这时把这些代码写在global.asax内可以做到全局控制. 未添加任何代码的global.asax文件如下: <script runa ...
- google安装于ubuntu14.04 64bit问题
1,下载deb安装包 wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb 2, 安装程序 su ...
- nginx 集群介绍
nginx 集群介绍 完成一次请求的步骤 1)用户发起请求 2)服务器接受请求 3)服务器处理请求(压力最大) 4)服务器响应请求 缺点:单点故障 单台服务器资源有限 单台服务器处理耗时长 ·1)部署 ...
- 如何使用Office Word 2007以上在写51CTO博客
目前大部分的博客作者在用Word写博客这件事情上都会遇到以下3个痛点: 1.所有博客平台关闭了文档发布接口,用户无法使用Word,Windows Live Writer等工具来发布博客.使用Word写 ...
- Thread.sleep() 和 Thread.yield() 区别
1. Thread.yield(): api中解释: 暂停当前正在执行的线程对象,并执行其他线程. 注意:这里的其他也包含当前线程,所以会出现以下结果. public class Test exten ...