Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu

Description

Ocean从影视城回来后,吃了一个放大果实(恶魔果实的一种),高呼:“海贼王に、俺はなる!”

Ocean每使用一次能力,就可以将一个物品的价值放大$x$倍(原价值乘以$x$)。 
但是哪有这么好的事情? 
物品的价值是有限度的,姑且认为物品的价值上界为$M$。 
如果经过放大后物品的价值大于或者等于$M$,那么该物品价值将恒定以$M$的值减少,直到小于$M$为止。 
比如价值为$19,M = 6$:要减少$3$次$M$,即$19 - 6 = 13,13 - 6 = 7,7 - 6 = 1 < 6。$

假设物品初始的价值为$1$,Ocean会对该物品使用$N$次能力。 
他想知道经过$N$次放大之后,物品的价值是否大于$Y$?

Input

第一行输入一个整数$T$,代表有$T$组测试数据。 
每组数据依次输入四个整数$x,N,M,Y,$分别代表上面提到的信息。

注:$1 <= T <= 100000,1 <= x, N <= 10^9,1 <= M <= 10^9,|Y| <= 2 * 10^9。$

Output

若最后物品的价值大于$Y$请输出"YES",反之输出"NO"。(输出结果不带引号)

Sample Input

2
2 3 5 4
3 10 7 3

Sample Output

NO
YES

Hint

对第一组测试数据,

第一次放大后物品价值为$2,2 < 5,$不减少。

第二次放大后物品价值为$4,4 < 5,$不减少。

第三次放大后物品价值为$8,8 > 5,$每次减少$5$,则$8 - 5 = 3 < 5$合法。

最后价值为$3,3 < 4。$

真的不懂当时自己明明知道方法,但是就是提交不上去,还是自己的基础知识没有掌握好。同余定理没有掌握好。

  

 #include<stdio.h>

 int main()
{
int T;
scanf("%d",&T);
while(T--)
{
long long t,x;
int n,m,y;
t=;
scanf("%lld%d%d%d",&x,&n,&m,&y);
while(n!=)
{
if(n%) //这里的快速幂知识,和我记的模板并不一样,他是
t=(t*x)%m; //经过了自己的理解了的模板,我现在还没有到这一步
x=(x*x)%m;    
n=n/; //用到了同余定理
}
if(t>y) printf("YES\n");
else printf("NO\n");
}
return ;
}

同余定理的另一种表述方式

如果经过放大后物品的价值大于或者等于$M$,那么该物品价值将恒定以$M$的值减少,直到小于$M$为止。 
比如价值为$19,M = 6$:要减少$3$次$M$,即$19 - 6 = 13,13 - 6 = 7,7 - 6 = 1 < 6。$

J - Judge(快速幂)(同余定理)的更多相关文章

  1. 洛谷 P1226 【模板】快速幂||取余运算

    题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...

  2. hdu1061Rightmost Digit(快速幂取余)

    Rightmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  3. LightOJ - 1282 - Leading and Trailing(数学技巧,快速幂取余)

    链接: https://vjudge.net/problem/LightOJ-1282 题意: You are given two integers: n and k, your task is to ...

  4. 洛谷P1226 【模板】快速幂||取余运算

    题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 S1: ...

  5. LuoguP1226 【模板】快速幂||取余运算

    题目链接:https://www.luogu.org/problemnew/show/P1226 第一次学快速幂,将别人对快速幂原理的解释简要概括一下: 计算a^b时,直接乘的话计算次数为b,而快速幂 ...

  6. hdu4767_Bell_矩阵快速幂+中国剩余定理

    2013长春赛区网络赛的1009题 比赛的时候这道题英勇的挂掉了,原因是写错了一个系数,有时候粗心比脑残更可怕 本题是关于Bell数,关于Bell数的详情请见维基:http://en.wikipedi ...

  7. 题解 P1226 【【模板】快速幂||取余运算】

    1.题目分析 原题 本题在于快速幂的使用,以及对long long的应用问题. 2.解题思路 快速幂 求幂常见用法: int pow(int a,int b) { int ans; for(int i ...

  8. [每日一题2020.06.15]P1226 【模板】快速幂取余运算

    我是题目 快速幂就是快速求 \(a^b\)的一种算法 快速幂 思想 : 比如我要求 \(6^9\) 首先将幂转化为二进制形式 : \[6^9 = 6^{1001} \tag{1} \] 可以得到 : ...

  9. 【模板】快速幂&取余运算

    输入\(b\),\(p\),\(k\)的值,求\(b^p mod k\)的值.其中\(b\),\(p\),\(k^2\)为长整型数. 1.普通做法 \(print\) \(pow(b,p)\)\(mo ...

随机推荐

  1. TCP/IP知识总结(TCP/IP协议族读书笔记一)

    一.简述TCP/IP协议 Transmission Control Protocol/Internet Protocol的简写,即传输控制协议/互联网互联协议,又名网络通信协议.是Internet最基 ...

  2. 归纳整理Linux下C语言常用的库函数----字符串转换、字符测试、及内存控制

    在没有IDE的时候,记住一些常用的库函数的函数名.参数.基本用法及注意事项是很有必要的. 参照Linux_C_HS.chm的目录,我大致将常用的函数分为一下几类: 1. 内存及字符串控制及操作 2. ...

  3. orchard cms 项目迁移

    删除Orchard.Web  下的 App_Data 目录,重新安装项目

  4. context和aop

    context可以看作是模切关注点,通过给join point(即被织入的业务)标记自定义属性(point cut,继承自ContextAttribute),可以得到context,然后advice具 ...

  5. shutdown和close的区别

    [shutdown和close的区别] 当所有的数据操作结束以后,你可以调用close()函数来释放该socket,从而停止在该socket上的任何数据操作:close(sockfd); 你也可以调用 ...

  6. viewer.js--一个强大的jQuery图像查看插件

    Viewer 是一款强大的 jQuery 图像浏览插件. 主要功能: 支持选项 支持方法 支持事件 支持触摸 支持移动 支持缩放 支持旋转 支持键盘 跨浏览器支持 查看演示      立即下载 部分插 ...

  7. What's App has the Qt?

    收集了我看到的使用Qt开发的应用程序或者含有Qt库的应用程序 CNTV CNTV, 一个中央电视台的视频直播软件, 从下面卸载后的残余目录树,可以看到,存在部分库使用的就是Qt的.下面的目录树,已经删 ...

  8. CiteSpace安装使用简介

    一.简介 CiteSpaceⅡ基于JAVA平台的信息可视化软,是美国Drexel大学陈超美(Chaomei Chen)教授开发的,用于文献引文网络分析的信息,作为文献计量学方面最先进的分析工具之一,是 ...

  9. gatttool的使用

    1.使能hci接口 # hciconfig hci0 up 2.使用hcitool搜索BLE设备 # hcitool lescan LE Scan ...D0:39:72:BE:D2:26 (unkn ...

  10. linux下的shell运算(加、减、乘、除

    linux下的shell运算(加.减.乘.除 摘自:https://blog.csdn.net/hxpjava1/article/details/80719112 2018年06月17日 16:03: ...