像素的减少

开运算(较少)

腐蚀(去除更多)

对灰度图像的开运算或腐蚀 相当于将灰度图像变暗

像素增加

闭运算(较少)

膨胀(较多)

对灰度图像的闭运算或膨胀 相当于将灰度图像变亮

仿射变换

另外一种仿射变换

* This example demonstrates an application from the pharmaceutical
* industry. The task is to check the content of automatically filled
* blisters. The first image (reference) is used to locate the chambers
* within a blister shape as a reference model, which is then used to
* realign the subsequent images along to this reference shape. Using
* blob analysis the content of each chamber is segmented and finally
* classified by a few shape features.
*
dev_close_window ()
dev_update_off ()
read_image (ImageOrig, 'blister/blister_reference')
dev_open_window_fit_image (ImageOrig, 0, 0, -1, -1, WindowHandle)
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
dev_set_draw ('margin')
dev_set_line_width (3)
*
* In the first step, we create a pattern to cut out the chambers in the
* subsequent blister images easily.
access_channel (ImageOrig, Image1, 1)
threshold (Image1, Region, 90, 255)
shape_trans (Region, Blister, 'convex')
orientation_region (Blister, Phi)//计算角度Phi
area_center (Blister, Area1, Row, Column)//获取面积和中心点坐标
*将原来的(Row, Column, Phi)表示为(Row, Column, 0),也就是将角度调正
*输出变换矩阵HomMat2D
vector_angle_to_rigid (Row, Column, Phi, Row, Column, 0, HomMat2D)
affine_trans_image (ImageOrig, Image2, HomMat2D, 'constant', 'false')
gen_empty_obj (Chambers)
for I := 0 to 4 by 1
Row := 88 + I * 70
for J := 0 to 2 by 1
Column := 163 + J * 150
gen_rectangle2 (Rectangle, Row, Column, 0, 64, 30)
concat_obj (Chambers, Rectangle, Chambers)
endfor
endfor
affine_trans_region (Blister, Blister, HomMat2D, 'nearest_neighbor')
difference (Blister, Chambers, Pattern)
union1 (Chambers, ChambersUnion)
orientation_region (Blister, PhiRef)
PhiRef := rad(180) + PhiRef
area_center (Blister, Area2, RowRef, ColumnRef)
*
*
* Each image read will be aligned to this pattern and reduced to the area of interest,
* which is the chambers of the blister
Count := 6
for Index := 1 to Count by 1
read_image (Image, 'blister/blister_' + Index$'02')
threshold (Image, Region, 90, 255)
connection (Region, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 5000, 9999999)
shape_trans (SelectedRegions, RegionTrans, 'convex')
*
* Align pattern along blister of image
orientation_region (RegionTrans, Phi)
area_center (RegionTrans, Area3, Row, Column)
vector_angle_to_rigid (Row, Column, Phi, RowRef, ColumnRef, PhiRef, HomMat2D)
affine_trans_image (Image, ImageAffineTrans, HomMat2D, 'constant', 'false')
*
* Segment pills
reduce_domain (ImageAffineTrans, ChambersUnion, ImageReduced)
decompose3 (ImageReduced, ImageR, ImageG, ImageB)
var_threshold (ImageB, Region, 7, 7, 0.2, 2, 'dark')
connection (Region, ConnectedRegions0)
closing_rectangle1 (ConnectedRegions0, ConnectedRegions, 3, 3)
fill_up (ConnectedRegions, RegionFillUp)
select_shape (RegionFillUp, SelectedRegions, 'area', 'and', 1000, 99999)
opening_circle (SelectedRegions, RegionOpening, 4.5)
connection (RegionOpening, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 1000, 99999)
shape_trans (SelectedRegions, Pills, 'convex')
*
* Classify segmentation results and display statistics
count_obj (Chambers, Number)
gen_empty_obj (WrongPill)
gen_empty_obj (MissingPill)
for I := 1 to Number by 1
select_obj (Chambers, Chamber, I)
intersection (Chamber, Pills, Pill)
area_center (Pill, Area, Row1, Column1)
if (Area > 0)
min_max_gray (Pill, ImageB, 0, Min, Max, Range)
if (Area < 3800 or Min < 60)
concat_obj (WrongPill, Pill, WrongPill)
endif
else
concat_obj (MissingPill, Chamber, MissingPill)
endif
endfor
*
dev_clear_window ()
dev_display (ImageAffineTrans)
dev_set_color ('forest green')
count_obj (Pills, NumberP)
count_obj (WrongPill, NumberWP)
count_obj (MissingPill, NumberMP)
dev_display (Pills)
if (NumberMP > 0 or NumberWP > 0)
disp_message (WindowHandle, 'Not OK', 'window', 12, 12 + 600, 'red', 'true')
else
disp_message (WindowHandle, 'OK', 'window', 12, 12 + 600, 'forest green', 'true')
endif
*
Message := '# Correct pills: ' + (NumberP - NumberWP)
Message[1] := '# Wrong pills : ' + NumberWP
Message[2] := '# Missing pills: ' + NumberMP
*
Colors := gen_tuple_const(3,'black')
if (NumberWP > 0)
Colors[1] := 'red'
endif
if (NumberMP > 0)
Colors[2] := 'red'
endif
disp_message (WindowHandle, Message, 'window', 12, 12, Colors, 'true')
dev_set_color ('red')
dev_display (WrongPill)
dev_display (MissingPill)
if (Index < Count)
disp_continue_message (WindowHandle, 'black', 'true')
endif
stop ()
endfor

仿射变换 理论

https://www.cnblogs.com/liekkas0626/p/5238564.html 

Halcon 学习笔记3 仿射变换的更多相关文章

  1. Halcon学习笔记之支持向量机(二)

    例程:classify_halogen_bulbs.hdev 在Halcon中模式匹配最成熟最常用的方式该署支持向量机了,在本例程中展示了使用支持向量机对卤素灯的质量检测方法.通过这个案例,相信大家可 ...

  2. Halcon学习笔记之支持向量机(一)

    例程:class_overlap_svm.hdev 说明:这个例程展示了如何用一个支持向量机来给一幅二维的图像进行分类.使用二维数据的原因是因为它可以很容易地联想成为区域和图像.本例程中使用了三个互相 ...

  3. halcon学习笔记——机器视觉工程应用的开发思路【转】

    转自:http://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应 ...

  4. Halcon学习笔记——条形码的定位与识别

    一维码的原理与结构 条码基本原理是利用条纹和间隔或宽窄条纹(间隔)构成二进制的”0“和”1“,反映的是某种信息. 一维条码数据结构,分四个区域.组成分别为静区.起始/终止符.校验符.数据符. 一维条码 ...

  5. Halcon学习笔记——机器视觉应用工程开发思路及相机标定

    机器视觉应用工程开发思路 机器视觉应用工程主要可划分为两大部分,硬件部分和软件部分. 1.硬件部分,硬件的选型至关重要,决定了后续工作是否可以正常开展,其中关键硬件部分包括:光源,相机以及镜头. 2. ...

  6. Halcon学习笔记1

    转:https://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应 ...

  7. halcon学习笔记——(11)Image,region,xld初步

    一 读取的3种方式: 读取单张的图片: read_image( image,'filename') //image 是输出对象,后面是输入文件的路径和名称 读取多图: 1,申明一个数组,分别保存路径 ...

  8. Halcon学习笔记之缺陷检测(二)

    例程:detect_indent_fft.hdev 说明:这个程序展示了如何利用快速傅里叶变换(FFT)对塑料制品的表面进行目标(缺陷)的检测,大致分为三步: 首先,我们用高斯滤波器构造一个合适的滤波 ...

  9. Halcon学习笔记之缺陷检测(一)

    例程:surface_scratch.hdev 说明:这个程序利用局部阈值和形态学处理提取表面划痕 代码中绿色部分为个人理解和注释,其余为例程中原有代码 *surface_scratch.hdev:e ...

随机推荐

  1. 最近最少使用算法(LRU)——页面置换

    原创 上一篇博客写了先进先出算法(FIFO)——页面置换:http://www.cnblogs.com/chiweiming/p/9058438.html 此篇介绍最近最少使用算法(LRU)——页面置 ...

  2. 创建自定义view(翻译 androidtraining)

    创建自定义view 一个设计良好的的自定义view应该是一个设计良好的class,它包含了很多实用的功能,让人们更加容易使用接口.它充分利用GPU与内存的性能等等. 另外作为一个设计良好的类,一个自定 ...

  3. SVN-Tips

    一些实际使用中遇到与学习的SVN的TIPS 1.如何从SVN检出maven项目: 1.从svn导入“作为工作空间中的项目检出”--->Finish 2.如“1”操作后,会自动的在MyEclips ...

  4. 任意flex控件导出图片

    任意flex控件导出图片   flex导出图片功能通常是: 思路1:客户端将UIComponent转化为BitmapData,再转为ByteArray,将ByteArray上传到服务端,服务端发送文件 ...

  5. 20155308 《Java程序设计》实验五 网络编程与安全

    20155308 <Java程序设计>实验五 网络编程与安全 实验内容 任务一 两人一组结对编程: 参考http://www.cnblogs.com/rocedu/p/6766748.ht ...

  6. 20155331 2016-2017-2 《Java程序设计》第九周学习总结

    20155331 2016-2017-2 <Java程序设计>第九周学习总结 教材学习内容总结 JDBC是什么? JDBC代表Java数据库连接,这对Java编程语言和广泛的数据库之间独立 ...

  7. day 7 字符串

    6.字符串的常见操作 知道方向,不要去背 1)find,index #查找 2)count 和replace #替换 3)split # 分割(数据清洗) 4)capitalize 和 title # ...

  8. Ceph学习之路(二)之Ceph的工作原理及流程

    一.RADOS的对象寻址 Ceph 存储集群从 Ceph 客户端接收数据——不管是来自 Ceph 块设备. Ceph 对象存储. Ceph 文件系统.还是基于 librados 的自定义实现——并存储 ...

  9. cogs62 [HNOI2004] 宠物收养所

    cogs62 [HNOI2004] 宠物收养所 啦啦啦啦 不维护区间的平衡树题都是树状数组+二分练手题! 不会的参考我的普通平衡树的多种神奇解法之BIT+二分答案 // It is made by X ...

  10. 非Contorller类使用@Service中的方法

    组件扫描这种的是指bean,跟service没关系 service只能在Controller类中使用,如果别的类想使用,必须使用下面这种方法 内容来源:https://blog.csdn.net/u0 ...