像素的减少

开运算(较少)

腐蚀(去除更多)

对灰度图像的开运算或腐蚀 相当于将灰度图像变暗

像素增加

闭运算(较少)

膨胀(较多)

对灰度图像的闭运算或膨胀 相当于将灰度图像变亮

仿射变换

另外一种仿射变换

  1. * This example demonstrates an application from the pharmaceutical
  2. * industry. The task is to check the content of automatically filled
  3. * blisters. The first image (reference) is used to locate the chambers
  4. * within a blister shape as a reference model, which is then used to
  5. * realign the subsequent images along to this reference shape. Using
  6. * blob analysis the content of each chamber is segmented and finally
  7. * classified by a few shape features.
  8. *
  9. dev_close_window ()
  10. dev_update_off ()
  11. read_image (ImageOrig, 'blister/blister_reference')
  12. dev_open_window_fit_image (ImageOrig, 0, 0, -1, -1, WindowHandle)
  13. set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
  14. dev_set_draw ('margin')
  15. dev_set_line_width (3)
  16. *
  17. * In the first step, we create a pattern to cut out the chambers in the
  18. * subsequent blister images easily.
  19. access_channel (ImageOrig, Image1, 1)
  20. threshold (Image1, Region, 90, 255)
  21. shape_trans (Region, Blister, 'convex')
  22. orientation_region (Blister, Phi)//计算角度Phi
  23. area_center (Blister, Area1, Row, Column)//获取面积和中心点坐标
  24. *将原来的(Row, Column, Phi)表示为(Row, Column, 0),也就是将角度调正
  25. *输出变换矩阵HomMat2D
  26. vector_angle_to_rigid (Row, Column, Phi, Row, Column, 0, HomMat2D)
  27. affine_trans_image (ImageOrig, Image2, HomMat2D, 'constant', 'false')
  28. gen_empty_obj (Chambers)
  29. for I := 0 to 4 by 1
  30. Row := 88 + I * 70
  31. for J := 0 to 2 by 1
  32. Column := 163 + J * 150
  33. gen_rectangle2 (Rectangle, Row, Column, 0, 64, 30)
  34. concat_obj (Chambers, Rectangle, Chambers)
  35. endfor
  36. endfor
  37. affine_trans_region (Blister, Blister, HomMat2D, 'nearest_neighbor')
  38. difference (Blister, Chambers, Pattern)
  39. union1 (Chambers, ChambersUnion)
  40. orientation_region (Blister, PhiRef)
  41. PhiRef := rad(180) + PhiRef
  42. area_center (Blister, Area2, RowRef, ColumnRef)
  43. *
  44. *
  45. * Each image read will be aligned to this pattern and reduced to the area of interest,
  46. * which is the chambers of the blister
  47. Count := 6
  48. for Index := 1 to Count by 1
  49. read_image (Image, 'blister/blister_' + Index$'02')
  50. threshold (Image, Region, 90, 255)
  51. connection (Region, ConnectedRegions)
  52. select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 5000, 9999999)
  53. shape_trans (SelectedRegions, RegionTrans, 'convex')
  54. *
  55. * Align pattern along blister of image
  56. orientation_region (RegionTrans, Phi)
  57. area_center (RegionTrans, Area3, Row, Column)
  58. vector_angle_to_rigid (Row, Column, Phi, RowRef, ColumnRef, PhiRef, HomMat2D)
  59. affine_trans_image (Image, ImageAffineTrans, HomMat2D, 'constant', 'false')
  60. *
  61. * Segment pills
  62. reduce_domain (ImageAffineTrans, ChambersUnion, ImageReduced)
  63. decompose3 (ImageReduced, ImageR, ImageG, ImageB)
  64. var_threshold (ImageB, Region, 7, 7, 0.2, 2, 'dark')
  65. connection (Region, ConnectedRegions0)
  66. closing_rectangle1 (ConnectedRegions0, ConnectedRegions, 3, 3)
  67. fill_up (ConnectedRegions, RegionFillUp)
  68. select_shape (RegionFillUp, SelectedRegions, 'area', 'and', 1000, 99999)
  69. opening_circle (SelectedRegions, RegionOpening, 4.5)
  70. connection (RegionOpening, ConnectedRegions)
  71. select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 1000, 99999)
  72. shape_trans (SelectedRegions, Pills, 'convex')
  73. *
  74. * Classify segmentation results and display statistics
  75. count_obj (Chambers, Number)
  76. gen_empty_obj (WrongPill)
  77. gen_empty_obj (MissingPill)
  78. for I := 1 to Number by 1
  79. select_obj (Chambers, Chamber, I)
  80. intersection (Chamber, Pills, Pill)
  81. area_center (Pill, Area, Row1, Column1)
  82. if (Area > 0)
  83. min_max_gray (Pill, ImageB, 0, Min, Max, Range)
  84. if (Area < 3800 or Min < 60)
  85. concat_obj (WrongPill, Pill, WrongPill)
  86. endif
  87. else
  88. concat_obj (MissingPill, Chamber, MissingPill)
  89. endif
  90. endfor
  91. *
  92. dev_clear_window ()
  93. dev_display (ImageAffineTrans)
  94. dev_set_color ('forest green')
  95. count_obj (Pills, NumberP)
  96. count_obj (WrongPill, NumberWP)
  97. count_obj (MissingPill, NumberMP)
  98. dev_display (Pills)
  99. if (NumberMP > 0 or NumberWP > 0)
  100. disp_message (WindowHandle, 'Not OK', 'window', 12, 12 + 600, 'red', 'true')
  101. else
  102. disp_message (WindowHandle, 'OK', 'window', 12, 12 + 600, 'forest green', 'true')
  103. endif
  104. *
  105. Message := '# Correct pills: ' + (NumberP - NumberWP)
  106. Message[1] := '# Wrong pills : ' + NumberWP
  107. Message[2] := '# Missing pills: ' + NumberMP
  108. *
  109. Colors := gen_tuple_const(3,'black')
  110. if (NumberWP > 0)
  111. Colors[1] := 'red'
  112. endif
  113. if (NumberMP > 0)
  114. Colors[2] := 'red'
  115. endif
  116. disp_message (WindowHandle, Message, 'window', 12, 12, Colors, 'true')
  117. dev_set_color ('red')
  118. dev_display (WrongPill)
  119. dev_display (MissingPill)
  120. if (Index < Count)
  121. disp_continue_message (WindowHandle, 'black', 'true')
  122. endif
  123. stop ()
  124. endfor

仿射变换 理论

https://www.cnblogs.com/liekkas0626/p/5238564.html 

Halcon 学习笔记3 仿射变换的更多相关文章

  1. Halcon学习笔记之支持向量机(二)

    例程:classify_halogen_bulbs.hdev 在Halcon中模式匹配最成熟最常用的方式该署支持向量机了,在本例程中展示了使用支持向量机对卤素灯的质量检测方法.通过这个案例,相信大家可 ...

  2. Halcon学习笔记之支持向量机(一)

    例程:class_overlap_svm.hdev 说明:这个例程展示了如何用一个支持向量机来给一幅二维的图像进行分类.使用二维数据的原因是因为它可以很容易地联想成为区域和图像.本例程中使用了三个互相 ...

  3. halcon学习笔记——机器视觉工程应用的开发思路【转】

    转自:http://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应 ...

  4. Halcon学习笔记——条形码的定位与识别

    一维码的原理与结构 条码基本原理是利用条纹和间隔或宽窄条纹(间隔)构成二进制的”0“和”1“,反映的是某种信息. 一维条码数据结构,分四个区域.组成分别为静区.起始/终止符.校验符.数据符. 一维条码 ...

  5. Halcon学习笔记——机器视觉应用工程开发思路及相机标定

    机器视觉应用工程开发思路 机器视觉应用工程主要可划分为两大部分,硬件部分和软件部分. 1.硬件部分,硬件的选型至关重要,决定了后续工作是否可以正常开展,其中关键硬件部分包括:光源,相机以及镜头. 2. ...

  6. Halcon学习笔记1

    转:https://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应 ...

  7. halcon学习笔记——(11)Image,region,xld初步

    一 读取的3种方式: 读取单张的图片: read_image( image,'filename') //image 是输出对象,后面是输入文件的路径和名称 读取多图: 1,申明一个数组,分别保存路径 ...

  8. Halcon学习笔记之缺陷检测(二)

    例程:detect_indent_fft.hdev 说明:这个程序展示了如何利用快速傅里叶变换(FFT)对塑料制品的表面进行目标(缺陷)的检测,大致分为三步: 首先,我们用高斯滤波器构造一个合适的滤波 ...

  9. Halcon学习笔记之缺陷检测(一)

    例程:surface_scratch.hdev 说明:这个程序利用局部阈值和形态学处理提取表面划痕 代码中绿色部分为个人理解和注释,其余为例程中原有代码 *surface_scratch.hdev:e ...

随机推荐

  1. Oracle入门第六天(下)——高级子查询

    一.概述 主要内容: 二.子查询介绍 1.简单子查询(WHERE子查询) SELECT last_name FROM employees WHERE salary > (SELECT salar ...

  2. 第六周课上测试-3-ch02补充作业

    实验要求: 编写一个程序 "week0603学号.c",运行下面代码: short int v = -学号后四位 unsigned short uv = (unsigned sho ...

  3. 20155317 2016-2017-2 《Java程序设计》第十学习总结

    20155317 2016-2017-2 <Java程序设计>第十学习总结 教材学习内容总结 1.网络编程的概念: 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作 ...

  4. 20155320 2016-2017-3 《Java程序设计》第三周学习总结

    20155320 2016-2017-3 <Java程序设计>第三周学习总结 教材学习内容总结 定义类 步骤: 在程序中定义类 使用new关键词新建一个对象 声明参考名称,并将名称参考至新 ...

  5. 封印解除:如何在Win10家庭版中启用组策略

    @echo off pushd "%~dp0" *.mum >List.txt *.mum >>List.txt for /f %%i in ('findstr ...

  6. 【转载】值得推荐的C/C++框架和库

    原文:值得推荐的C/C++框架和库 值得学习的C语言开源项目 Libevent libev是一个开源的事件驱动库,基于epoll,kqueue等OS提供的基础设施.其以高效出名,它可以将IO事件,定时 ...

  7. QML和JS引擎的关系以及调用c++函数的原理

    首先推荐几篇博客 1.深入解析QML引擎, 第1部分:QML文件加载 https://www.cnblogs.com/wzxNote/p/10569535.html 2.深入解析QML引擎, 第2部分 ...

  8. 如何快速解决MySQL 1032 主从错误

    3分钟解决MySQL 1032主从错误 Part1:写在最前1032错误----现在生产库中好多数据,在从库误删了,生产库更新后找不到了,现在主从不同步了,再跳过错误也没用,因为没这条,再更新还会报错 ...

  9. selenium 结合 docker 构建分布式测试环境 (初学者视角)

    前言:随着自动化测试越学越深,深深觉得有太多的东西需要总结. 1.记录下学习中遇到的坑,当做学习笔记.2.有前人路过看到文章中比较落后的做法,请务必一定要指教.(因为是初学者视角,很多东西只是走通而已 ...

  10. TPO 02 - The Origins of Cetaceans

    TPO 02 - The Origins of Cetaceans It should be obvious that cetaceans[n. 鲸目动物]-whales, porpoises [n. ...