欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~

作者 :崔庆才

本节分享一下爬取知乎用户所有用户信息的 Scrapy 爬虫实战。

本节目标

本节要实现的内容有:

  • 从一个大V用户开始,通过递归抓取粉丝列表和关注列表,实现知乎所有用户的详细信息的抓取。

  • 将抓取到的结果存储到 MongoDB,并进行去重操作。

思路分析

我们都知道每个人都有关注列表和粉丝列表,尤其对于大V来说,粉丝和关注尤其更多。

如果我们从一个大V开始,首先可以获取他的个人信息,然后我们获取他的粉丝列表和关注列表,然后遍历列表中的每一个用户,进一步抓取每一个用户的信息还有他们各自的粉丝列表和关注列表,然后再进一步遍历获取到的列表中的每一个用户,进一步抓取他们的信息和关注粉丝列表,循环往复,不断递归,这样就可以做到一爬百,百爬万,万爬百万,通过社交关系自然形成了一个爬取网,这样就可以爬到所有的用户信息了。当然零粉丝零关注的用户就忽略他们吧~

爬取的信息怎样来获得呢?不用担心,通过分析知乎的请求就可以得到相关接口,通过请求接口就可以拿到用户详细信息和粉丝、关注列表了。

接下来我们开始实战爬取。

环境需求

Python3

本项目使用的 Python 版本是 Python3,项目开始之前请确保你已经安装了Python3。

Scrapy

Scrapy 是一个强大的爬虫框架,安装方式如下:

pip3 install scrapy

MongoDB

非关系型数据库,项目开始之前请先安装好 MongoDB 并启动服务。

PyMongo

Python 的 MongoDB 连接库,安装方式如下:

pip3 install pymongo

创建项目

安装好以上环境之后,我们便可以开始我们的项目了。
在项目开始之首先我们用命令行创建一个项目:

scrapy startproject zhihuuser

创建爬虫

接下来我们需要创建一个 spider,同样利用命令行,不过这次命令行需要进入到项目里运行。

cd zhihuuser
scrapy genspider zhihu www.zhihu.com

禁止ROBOTSTXT_OBEY

接下来你需要打开settings.py文件,将ROBOTSTXT_OBEY修改为 False。

ROBOTSTXT_OBEY = False

它默认为True,就是要遵守robots.txt 的规则,那么robots.txt是个什么东西呢?

通俗来说,robots.txt是遵循 Robot 协议的一个文件,它保存在网站的服务器中,它的作用是,告诉搜索引擎爬虫,本网站哪些目录下的网页 不希望 你进行爬取收录。在Scrapy启动后,会在第一时间访问网站的robots.txt 文件,然后决定该网站的爬取范围。

当然,我们并不是在做搜索引擎,而且在某些情况下我们想要获取的内容恰恰是被robots.txt 所禁止访问的。所以,某些时候,我们就要将此配置项设置为 False ,拒绝遵守 Robot协议 !

所以在这里设置为 False 。当然可能本次爬取不一定会被它限制,但是我们一般来说会首先选择禁止它。

尝试最初的爬取

接下来我们什么代码也不修改,执行爬取,运行如下命令:

scrapy crawl zhihu

你会发现爬取结果会出现这样的一个错误:

500 Internal Server Error

访问知乎得到的状态码是500,这说明爬取并没有成功,其实这是因为我们没有加入请求头,知乎识别User-Agent发现不是浏览器,就返回错误的响应了。

所以接下来的一步我们需要加入请求 headers 信息,你可以在 Request 的参数里加,也可以在 spider 里面的custom_settings里面加,当然最简单的方法莫过于在全局 settings 里面加了。

我们打开settings.py文件,取消DEFAULT_REQUEST_HEADERS的注释,加入如下的内容:

DEFAULT_REQUEST_HEADERS = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36'
}

这个是为你的请求添加请求头,如果你没有设置 headers 的话,它就会使用这个请求头请求,添加了User-Agent信息,所以这样我们的爬虫就可以伪装浏览器了。

接下来重新运行爬虫。

scrapy crawl zhihu

这时你就会发现得到的返回状态码就正常了。

解决了这个问题,我们接下来就可以分析页面逻辑来正式实现爬虫了。

爬取流程

接下来我们需要先探寻获取用户详细信息和获取关注列表的接口。

回到网页,打开浏览器的控制台,切换到Network监听模式。

我们首先要做的是寻找一个大V,以轮子哥为例吧,它的个人信息页面网址是:https://www.zhihu.com/people/excited-vczh

首先打开轮子哥的首页

我们可以看到这里就是他的一些基本信息,我们需要抓取的就是这些,比如名字、签名、职业、关注数、赞同数等等。

接下来我们需要探索一下关注列表接口在哪里,我们点击关注选项卡,然后下拉,点击翻页,我们会在下面的请求中发现出现了 followees 开头的 Ajax 请求。这个就是获取关注列表的接口。

我们观察一下这个请求结构

首先它是一个Get类型的请求,请求的URL是https://www.zhihu.com/api/v4/members/excited-vczh/followees,后面跟了三个参数,一个是include,一个是offset,一个是limit。

观察后可以发现,include 是一些获取关注的人的基本信息的查询参数,包括回答数、文章数等等。

offset 是偏移量,我们现在分析的是第3 页的关注列表内容,offset 当前为40。

limit 为每一页的数量,这里是20,所以结合上面的 offset 可以推断,当 offset 为0 时,获取到的是第一页关注列表,当offset 为20 时,获取到的是第二页关注列表,依次类推。

然后接下来看下返回结果:

可以看到有 data 和 paging 两个字段,data 就是数据,包含20个内容,这些就是用户的基本信息,也就是关注列表的用户信息。

paging里面又有几个字段,is_end表示当前翻页是否结束,next 是下一页的链接,所以在判读分页的时候,我们可以先利用is_end判断翻页是否结束,然后再获取 next 链接,请求下一页。

这样我们的关注列表就可以通过接口获取到了。

接下来我们再看下用户详情接口在哪里,我们将鼠标放到关注列表任意一个头像上面,观察下网络请求,可以发现又会出现一个 Ajax 请求。

可以看到这次的请求链接为https://www.zhihu.com/api/v4/members/lu-jun-ya-1
后面又一个参数include,include 是一些查询参数,与刚才的接口类似,不过这次参数非常全,几乎可以把所有详情获取下来,另外接口的最后是加了用户的用户名,这个其实是url_token,上面的那个接口其实也是,在返回数据中是可以获得的。

所以综上所述:

理清了如上接口逻辑后,我们就可以开始构造请求了。

生成第一步请求

接下来我们要做的第一步当然是请求轮子哥的基本信息,然后获取轮子哥的关注列表了,我们首先构造一个格式化的url,将一些可变参数提取出来,然后需要重写start_requests方法,生成第一步的请求,接下来我们还需要根据获取到到关注列表做进一步的分析。

import json
from scrapy import Spider, Request
from zhihuuser.items import UserItem class ZhihuSpider(Spider):
name = "zhihu"
allowed_domains = ["www.zhihu.com"]
user_url = 'https://www.zhihu.com/api/v4/members/{user}?include={include}'
follows_url = 'https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}'
start_user = 'excited-vczh'
user_query = 'locations,employments,gender,educations,business,voteup_count,thanked_Count,follower_count,following_count,cover_url,following_topic_count,following_question_count,following_favlists_count,following_columns_count,answer_count,articles_count,pins_count,question_count,commercial_question_count,favorite_count,favorited_count,logs_count,marked_answers_count,marked_answers_text,message_thread_token,account_status,is_active,is_force_renamed,is_bind_sina,sina_weibo_url,sina_weibo_name,show_sina_weibo,is_blocking,is_blocked,is_following,is_followed,mutual_followees_count,vote_to_count,vote_from_count,thank_to_count,thank_from_count,thanked_count,description,hosted_live_count,participated_live_count,allow_message,industry_category,org_name,org_homepage,badge[?(type=best_answerer)].topics'
follows_query = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics' def start_requests(self):
yield Request(self.user_url.format(user=self.start_user, include=self.user_query), self.parse_user)
yield Request(self.follows_url.format(user=self.start_user, include=self.follows_query, limit=20, offset=0),
self.parse_follows)

然后我们实现一下两个解析方法parse_userparse_follows

    def parse_user(self, response):
print(response.text)
def parse_follows(self, response):
print(response.text)

最简单的实现他们的结果输出即可,然后运行观察结果。

scrapy crawl zhihu

这时你会发现出现了

401 HTTP status code is not handled or not allowed

访问被禁止了,这时我们观察下浏览器请求,发现它相比之前的请求多了一个 OAuth 请求头。

OAuth

它是Open Authorization的缩写。

OAUTH_token:OAUTH进行到最后一步得到的一个“令牌”,通过此“令牌”请求,就可以去拥有资源的网站抓取任意有权限可以被抓取的资源。

在这里我知乎并没有登陆,这里的OAuth值是

oauth c3cef7c66a1843f8b3a9e6a1e3160e20

经过我长久的观察,这个一直不会改变,所以可以长久使用,我们将它配置到DEFAULT_REQUEST_HEADERS里,这样它就变成了:

DEFAULT_REQUEST_HEADERS = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36',
'authorization': 'oauth c3cef7c66a1843f8b3a9e6a1e3160e20',
}

接下来如果我们重新运行爬虫,就可以发现可以正常爬取了。

parse_user

接下来我们处理一下用户基本信息,首先我们查看一下接口信息会返回一些什么数据。

可以看到返回的结果非常全,在这里我们直接声明一个Item全保存下就好了。

在 items 里新声明一个 UserItem

from scrapy import Item, Field

class UserItem(Item):
# define the fields for your item here like:
id = Field()
name = Field()
avatar_url = Field()
headline = Field()
description = Field()
url = Field()
url_token = Field()
gender = Field()
cover_url = Field()
type = Field()
badge = Field() answer_count = Field()
articles_count = Field()
commercial_question_count = Field()
favorite_count = Field()
favorited_count = Field()
follower_count = Field()
following_columns_count = Field()
following_count = Field()
pins_count = Field()
question_count = Field()
thank_from_count = Field()
thank_to_count = Field()
thanked_count = Field()
vote_from_count = Field()
vote_to_count = Field()
voteup_count = Field()
following_favlists_count = Field()
following_question_count = Field()
following_topic_count = Field()
marked_answers_count = Field()
mutual_followees_count = Field()
hosted_live_count = Field()
participated_live_count = Field() locations = Field()
educations = Field()
employments = Field()

所以在解析方法里面我们解析得到的 response 内容,然后转为 json 对象,然后依次判断字段是否存在,赋值就好了。

result = json.loads(response.text)
item = UserItem()
for field in item.fields:
if field in result.keys():
item[field] = result.get(field)
yield item

得到 item 后通过 yield 返回就好了。

这样保存用户基本信息就完成了。

接下来我们还需要在这里获取这个用户的关注列表,所以我们需要再重新发起一个获取关注列表的 request

parse_user后面再添加如下代码:

yield Request(
self.follows_url.format(user=result.get('url_token'), include=self.follows_query, limit=20, offset=0),
self.parse_follows)

这样我们又生成了获取该用户关注列表的请求。

parse_follows

接下来我们处理一下关注列表,首先也是解析response的文本,然后要做两件事:

  • 通过关注列表的每一个用户,对每一个用户发起请求,获取其详细信息。

  • 处理分页,判断 paging 内容,获取下一页关注列表。

所以在这里将parse_follows改写如下:

results = json.loads(response.text)

if 'data' in results.keys():
for result in results.get('data'):
yield Request(self.user_url.format(user=result.get('url_token'), include=self.user_query),
self.parse_user) if 'paging' in results.keys() and results.get('paging').get('is_end') == False:
next_page = results.get('paging').get('next')
yield Request(next_page,
self.parse_follows)

这样,整体代码如下:

# -*- coding: utf-8 -*-
import json from scrapy import Spider, Request
from zhihuuser.items import UserItem class ZhihuSpider(Spider):
name = "zhihu"
allowed_domains = ["www.zhihu.com"]
user_url = 'https://www.zhihu.com/api/v4/members/{user}?include={include}'
follows_url = 'https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}'
start_user = 'excited-vczh'
user_query = 'locations,employments,gender,educations,business,voteup_count,thanked_Count,follower_count,following_count,cover_url,following_topic_count,following_question_count,following_favlists_count,following_columns_count,answer_count,articles_count,pins_count,question_count,commercial_question_count,favorite_count,favorited_count,logs_count,marked_answers_count,marked_answers_text,message_thread_token,account_status,is_active,is_force_renamed,is_bind_sina,sina_weibo_url,sina_weibo_name,show_sina_weibo,is_blocking,is_blocked,is_following,is_followed,mutual_followees_count,vote_to_count,vote_from_count,thank_to_count,thank_from_count,thanked_count,description,hosted_live_count,participated_live_count,allow_message,industry_category,org_name,org_homepage,badge[?(type=best_answerer)].topics'
follows_query = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics' def start_requests(self):
yield Request(self.user_url.format(user=self.start_user, include=self.user_query), self.parse_user)
yield Request(self.follows_url.format(user=self.start_user, include=self.follows_query, limit=20, offset=0),
self.parse_follows) def parse_user(self, response):
result = json.loads(response.text)
item = UserItem() for field in item.fields:
if field in result.keys():
item[field] = result.get(field)
yield item yield Request(
self.follows_url.format(user=result.get('url_token'), include=self.follows_query, limit=20, offset=0),
self.parse_follows) def parse_follows(self, response):
results = json.loads(response.text) if 'data' in results.keys():
for result in results.get('data'):
yield Request(self.user_url.format(user=result.get('url_token'), include=self.user_query),
self.parse_user) if 'paging' in results.keys() and results.get('paging').get('is_end') == False:
next_page = results.get('paging').get('next')
yield Request(next_page,
self.parse_follows)

这样我们就完成了获取用户基本信息,然后递归获取关注列表进一步请求了。

重新运行爬虫,可以发现当前已经可以实现循环递归爬取了。

followers

上面我们实现了通过获取关注列表实现爬取循环,那这里少不了的还有粉丝列表,经过分析后发现粉丝列表的 api 也类似,只不过把 followee 换成了 follower,其他的完全相同,所以我们按照同样的逻辑添加 followers 相关信息,

最终spider代码如下:

# -*- coding: utf-8 -*-
import json from scrapy import Spider, Request
from zhihuuser.items import UserItem class ZhihuSpider(Spider):
name = "zhihu"
allowed_domains = ["www.zhihu.com"]
user_url = 'https://www.zhihu.com/api/v4/members/{user}?include={include}'
follows_url = 'https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}'
followers_url = 'https://www.zhihu.com/api/v4/members/{user}/followers?include={include}&offset={offset}&limit={limit}'
start_user = 'excited-vczh'
user_query = 'locations,employments,gender,educations,business,voteup_count,thanked_Count,follower_count,following_count,cover_url,following_topic_count,following_question_count,following_favlists_count,following_columns_count,answer_count,articles_count,pins_count,question_count,commercial_question_count,favorite_count,favorited_count,logs_count,marked_answers_count,marked_answers_text,message_thread_token,account_status,is_active,is_force_renamed,is_bind_sina,sina_weibo_url,sina_weibo_name,show_sina_weibo,is_blocking,is_blocked,is_following,is_followed,mutual_followees_count,vote_to_count,vote_from_count,thank_to_count,thank_from_count,thanked_count,description,hosted_live_count,participated_live_count,allow_message,industry_category,org_name,org_homepage,badge[?(type=best_answerer)].topics'
follows_query = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics'
followers_query = 'data[*].answer_count,articles_count,gender,follower_count,is_followed,is_following,badge[?(type=best_answerer)].topics' def start_requests(self):
yield Request(self.user_url.format(user=self.start_user, include=self.user_query), self.parse_user)
yield Request(self.follows_url.format(user=self.start_user, include=self.follows_query, limit=20, offset=0),
self.parse_follows)
yield Request(self.followers_url.format(user=self.start_user, include=self.followers_query, limit=20, offset=0),
self.parse_followers) def parse_user(self, response):
result = json.loads(response.text)
item = UserItem() for field in item.fields:
if field in result.keys():
item[field] = result.get(field)
yield item yield Request(
self.follows_url.format(user=result.get('url_token'), include=self.follows_query, limit=20, offset=0),
self.parse_follows) yield Request(
self.followers_url.format(user=result.get('url_token'), include=self.followers_query, limit=20, offset=0),
self.parse_followers) def parse_follows(self, response):
results = json.loads(response.text) if 'data' in results.keys():
for result in results.get('data'):
yield Request(self.user_url.format(user=result.get('url_token'), include=self.user_query),
self.parse_user) if 'paging' in results.keys() and results.get('paging').get('is_end') == False:
next_page = results.get('paging').get('next')
yield Request(next_page,
self.parse_follows) def parse_followers(self, response):
results = json.loads(response.text) if 'data' in results.keys():
for result in results.get('data'):
yield Request(self.user_url.format(user=result.get('url_token'), include=self.user_query),
self.parse_user) if 'paging' in results.keys() and results.get('paging').get('is_end') == False:
next_page = results.get('paging').get('next')
yield Request(next_page,
self.parse_followers)

需要改变的位置有

  • start_requests里面添加yield followers信息

  • parse_user里面里面添加yield followers信息

  • parse_followers做相应的的抓取详情请求和翻页

如此一来,spider 就完成了,这样我们就可以实现通过社交网络递归的爬取,把用户详情都爬下来。

小结

通过以上的spider,我们实现了如上逻辑:

  • start_requests方法,实现了第一个大V用户的详细信息请求还有他的粉丝和关注列表请求。

  • parse_user方法,实现了详细信息的提取和粉丝关注列表的获取。

  • paese_follows,实现了通过关注列表重新请求用户并进行翻页的功能。

  • paese_followers,实现了通过粉丝列表重新请求用户并进行翻页的功能。

加入pipeline

在这里数据库存储使用MongoDB,所以在这里我们需要借助于Item Pipeline,实现如下:

class MongoPipeline(object):
collection_name = 'users' def __init__(self, mongo_uri, mongo_db):
self.mongo_uri = mongo_uri
self.mongo_db = mongo_db @classmethod
def from_crawler(cls, crawler):
return cls(
mongo_uri=crawler.settings.get('MONGO_URI'),
mongo_db=crawler.settings.get('MONGO_DATABASE')
) def open_spider(self, spider):
self.client = pymongo.MongoClient(self.mongo_uri)
self.db = self.client[self.mongo_db] def close_spider(self, spider):
self.client.close() def process_item(self, item, spider):
self.db[self.collection_name].update({'url_token': item['url_token']}, {'$set': dict(item)}, True)
return item

比较重要的一点就在于process_item,在这里使用了 update 方法,第一个参数传入查询条件,这里使用的是url_token,第二个参数传入字典类型的对象,就是我们的 item,第三个参数传入True,这样就可以保证,如果查询数据存在的话就更新,不存在的话就插入。这样就可以保证去重了。

另外记得开启一下Item Pileline

ITEM_PIPELINES = {
'zhihuuser.pipelines.MongoPipeline': 300,
}

然后重新运行爬虫

scrapy crawl zhihu

这样就可以发现正常的输出了,会一直不停地运行,用户也一个个被保存到数据库。

看下MongoDB,里面我们爬取的用户详情结果。

到现在为止,整个爬虫就基本完结了,我们主要通过递归的方式实现了这个逻辑。存储结果也通过适当的方法实现了去重。

更高效率

当然我们现在运行的是单机爬虫,只在一台电脑上运行速度是有限的,所以后面我们要想提高抓取效率,需要用到分布式爬虫,在这里需要用到 Redis 来维护一个公共的爬取队列。

更多的分布式爬虫的实现可以查看自己动手,丰衣足食!Python3网络爬虫实战案例

相关推荐

Python操作Redis - 云爬虫初探
腾讯云主机Python3环境安装PySpider爬虫框架过程
腾讯云上PhantomJS用法示例


此文已由作者授权腾讯云技术社区发布,转载请注明文章出处
原文链接:https://www.qcloud.com/community/article/327315
获取更多腾讯海量技术实践干货,欢迎大家前往腾讯云技术社区

利用Scrapy爬取所有知乎用户详细信息并存至MongoDB的更多相关文章

  1. scrapy爬取全部知乎用户信息

    # -*- coding: utf-8 -*- # scrapy爬取全部知乎用户信息 # 1:是否遵守robbots_txt协议改为False # 2: 加入爬取所需的headers: user-ag ...

  2. Python爬虫从入门到放弃(十八)之 Scrapy爬取所有知乎用户信息(上)

    爬取的思路 首先我们应该找到一个账号,这个账号被关注的人和关注的人都相对比较多的,就是下图中金字塔顶端的人,然后通过爬取这个账号的信息后,再爬取他关注的人和被关注的人的账号信息,然后爬取被关注人的账号 ...

  3. Python之爬虫(二十) Scrapy爬取所有知乎用户信息(上)

    爬取的思路 首先我们应该找到一个账号,这个账号被关注的人和关注的人都相对比较多的,就是下图中金字塔顶端的人,然后通过爬取这个账号的信息后,再爬取他关注的人和被关注的人的账号信息,然后爬取被关注人的账号 ...

  4. Python爬虫从入门到放弃(十九)之 Scrapy爬取所有知乎用户信息(下)

    在上一篇文章中主要写了关于爬虫过程的分析,下面是代码的实现,完整代码在:https://github.com/pythonsite/spider items中的代码主要是我们要爬取的字段的定义 cla ...

  5. Python之爬虫(二十一) Scrapy爬取所有知乎用户信息(下)

    在上一篇文章中主要写了关于爬虫过程的分析,下面是代码的实现,完整代码在:https://github.com/pythonsite/spider items中的代码主要是我们要爬取的字段的定义 cla ...

  6. Python——Scrapy爬取链家网站所有房源信息

    用scrapy爬取链家全国以上房源分类的信息: 路径: items.py # -*- coding: utf-8 -*- # Define here the models for your scrap ...

  7. 利用 Scrapy 爬取知乎用户信息

    思路:通过获取知乎某个大V的关注列表和被关注列表,查看该大V和其关注用户和被关注用户的详细信息,然后通过层层递归调用,实现获取关注用户和被关注用户的关注列表和被关注列表,最终实现获取大量用户信息. 一 ...

  8. 利用scrapy爬取腾讯的招聘信息

    利用scrapy框架抓取腾讯的招聘信息,爬取地址为:https://hr.tencent.com/position.php 抓取字段包括:招聘岗位,人数,工作地点,发布时间,及具体的工作要求和工作任务 ...

  9. 利用scrapy爬取文件后并基于管道化的持久化存储

    我们在pycharm上爬取 首先我们可以在本文件打开命令框或在Terminal下创建 scrapy startproject xiaohuaPro   ------------创建文件 scrapy ...

随机推荐

  1. HTML友情链接代码

    <div align="center">     <table width="980" height="35" borde ...

  2. SQL server 数据库——数学函数、字符串函数、转换函数、时间日期函数

    数学函数.字符串函数.转换函数.时间日期函数 1.数学函数 ceiling()--取上限  select ceiling(oil) as 油耗上限 from car floor()--取下限 sele ...

  3. Spring+SpringMVC+MyBatis+easyUI整合基础篇(十二)阶段总结

    不知不觉,已经到了基础篇的收尾阶段了,看着前面的十几篇文章,真的有点不敢相信,自己竟然真的坚持了下来,虽然过程中也有过懒散和焦虑,不过结果还是自己所希望的,克服了很多的问题,将自己的作品展现出来,也发 ...

  4. mybatis基础学习3---特殊sql语句(备忘)

    1: 2: 3:resultMap的用法

  5. Webpack多入口文件、热更新等体验

    Webpack现今流行的前端打包工具,今儿本人也来分享下自己学习体验. 一.html-webpack-plugin 实现html模板文件的解析与生成 在plugins加入HtmlWebpackPlug ...

  6. 线程同步synchronized,Class与Object

    synchronized (class):class类的同步,同步的时候会同步整个class 与 synchronized (Object):Object的同步,只对其中的对象同步 如下:对类B中的同 ...

  7. iOS开发之单例模式

    1.概述 单例模式是一种常用的软件设计模式,通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统资源. 如果希望系统中某个类的对象只能存在一个,单例模 ...

  8. CSS.02 -- 样式表 及标签分类(块、行、行内块元素)、CSS三大特性、背景属性

    样式表书写位置  内嵌式写法 <head> <style type="text/css"> 样式表写法 </style> </head&g ...

  9. waypoints

    http://imakewebthings.com/waypoints waypoints 滑冰122分钟 Cygwin http:/nxutils.sourceforge.net http://ba ...

  10. 在腾讯云上把Laravel整合万向优图图片管理能力,打造高效图片处理服务

    推荐理由: 现如今数据爆炸性增长,人类生活产出的数据越来越多,文字信息,图片信息,视频信息:但有很多信息我们都无法直接使用,需通过一定的处理,才能够获取其中对我们有用的信息,在腾讯云上的万向优图能够对 ...