题目描述

01背包问题

有n个重量和价值分别为\(w_i,v_i\)的物品。从这些物品中挑选出总重量不超过W的物品,求所有挑选方案中价值中总和的最大值。

限制条件

  • 1 <= n <= 100
  • 1 <= \(w_i,v_i\) <= 100
  • 1 <= W <= 10000

样例输入

n = 4
(w,v) = {(2,3) (1,2) (3,4) (2,2)}
W = 5

样例输出

7(选择0,1,3号物品)

暴力求解

# include <iostream>
# include <algorithm>
using namespace std;

int n, W;
const int MAX_N = 10000;
int w[MAX_N], v[MAX_N];

int rec(int i, int j)
{
    int res;
    if (i == n)
    {
        res = 0;//在递归中,这也就相当于是循环的终止条件了

    }
    else if (j < w[i])//无法挑选物品
    {
        res = rec(i + 1, j);//采用递归的方法,对下一个物品进行挑选
    }
    else//挑选和不挑选都尝试一下
    {
        res = max(rec(i + 1, j), rec(i + 1, j - w[i]) + v[i]);
        //对于挑选的情况,因为采用了递归的方式,j 最为各个物品之间的和,每次当然要减去
        //挑选出来的满足条件的上一个物品的重量,并且对于挑选出的满足条件的物品的价值进行相加
    }
    return res;
}

void solve()
{
    printf("%d\n", rec(0, W));//从第0件物品开始挑选
}

int main()
{
    cin >> n;
    cout << "输入每个物品的重量";
    for (int i = 0; i < n; i++)
    {
        cin >> w[i];
    }

    cout << "输入每个物品的价值";
    for (int i = 0; i < n; i++)
    {
        cin >> v[i];
    }
    cout << "输入不能超过的最大的重量";
    cin >> W;
    solve();

    return 0;
}

小结

  • 对于这一段代码,rec(i + 1, j - w[i]) + v[i] 尤其是对于这个可以挑选的这一段代码
    的解释,想了一一下,一开始是有一个j 作为标准,从第i个物品开始挑选重量 小于j的物品,如果挑选出
    来一个这样的物品了,那么再挑选下一个物品的时候就必须要把前一个物品的重量减去,然后以这个新的
    “重量”来挑选下一个物品,为什么要这样做呢,原因很简单,因为是要求挑选出的物品总重量必须不能超过
    W 的物品的重量。当然了,对于没有挑选出来的,根本也就不存在价值的可能。不用相加。
  • 对于递归其实在某种意义上市一种循环,只是循环的条件有所不同。

记忆搜索与动态规划——DP背包问题的更多相关文章

  1. 算法-动态规划DP小记

    算法-动态规划DP小记 动态规划算法是一种比较灵活的算法,针对具体的问题要具体分析,其宗旨就是要找出要解决问题的状态,然后逆向转化为求解子问题,最终回到已知的初始态,然后再顺序累计各个子问题的解从而得 ...

  2. [Dynamic Programming]动态规划之背包问题

    动态规划之背包问题 例题 现有4样物品n = ['a', 'b', 'c', 'd'],重量分别为w = [2, 4, 5, 3],价值分别为v = [5, 4, 6, 2].背包最大承重c = 9. ...

  3. 动态规划dp

    一.概念:动态规划dp:是一种分阶段求解决策问题的数学思想. 总结起来就一句话:大事化小,小事化了 二.例子 1.走台阶问题 F(10):10级台阶的走法数量 所以:F(10)=F(9)+F(8) F ...

  4. 动态规划(DP),0-1背包问题

    题目链接:http://poj.org/problem?id=3624 1.p[i][j]表示,背包容量为j,从i,i+1,i+2,...,n的最优解. 2.递推公式 p[i][j]=max(p[i+ ...

  5. 记录结果再利用的"动态规划"之背包问题

    参考<挑战程序设计竞赛>p51 https://www.cnblogs.com/Ymir-TaoMee/p/9419377.html 01背包问题 问题描述:有n个重量和价值分别为wi.v ...

  6. 【动态规划/多重背包问题】POJ1014-Dividing

    多重背包问题的优化版来做,详见之前的动态规划读书笔记. dp[i][j]表示前i中数加得到j时第i种数最多剩余几个(不能加和得到i的情况下为-1)递推式为: dp[i][j]=mi(dp[i-1][j ...

  7. 【Luogu】【关卡2-15】动态规划的背包问题(2017年10月)【还差一道题】

    任务说明:这是最基础的动态规划.不过如果是第一次接触会有些难以理解.加油闯过这个坎. 01背包二维数组优化成滚动数组的时候有坑有坑有坑!!!必须要downto,downto,downto 情景和代码见 ...

  8. 深入理解动态规划DP

    通过最近对于一些算法题的思考,越来越发现动态规划方法的在时间上高效性,往往该问题可以轻松的找到暴力破解的方法,其时间复杂度却不尽人意.下面来看看几个常见的动态规划思路的经典问题 例一.有一段楼梯有10 ...

  9. poj 1742 Coins (动态规划,背包问题)

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 32977   Accepted: 11208 Descripti ...

随机推荐

  1. Python Requests: Invalid Header Name 解决方法

    这几天在练习python,并且用到了Requests,不得不说真的比urllib 方便了很多啊,简直有点事半功倍的感觉 言归正传,(好像上面的话也没多歪啦~~~~~) 简单叙述下我的script 流程 ...

  2. 浏览器控制台console的使用

    前天在团队项目中因为产品需求在提交订单的时候需要多个页面的数据作为提交接口的参数,这种需求让人醉醉的,项目用angular来做的,没办法只能用全局变量来定义要交互的值和localStorage来临时的 ...

  3. 【ACM小白成长撸】--计算单词个数

    我判断单词个数的方法,根据空格‘ ’的个数 分情况 当没有单词的时候 判断第一个符号,即a[0] == ‘\0’时,赋值给存储个数的数组 当遇到空格时,只有前面一个字符不是空格字符,后面一个字符不是空 ...

  4. C# 反向生成工具(DAL BLL Modle)

    VS2015  ADO.NET无果后果断~! 动软生成:http://pan.baidu.com/s/1gfIf0ZL

  5. 团队作业10——复审与事后分析(Beta版本)

    Deadline: 2017-6-13 22:00PM,以博客发表日期为准 评分基准: 按时交 - 有分,检查的项目内容为后文的两个方面 Beta阶段项目复审(单独一篇博客) 事后诸葛亮分析报告(单独 ...

  6. 团队作业9——测试与发布(Beta版本)

    Deadline: 2017-6-5 22:00PM,以博客发表日期为准 评分基准: 按时交 - 有分,检查的项目包括后文的两个方面 测试报告 发布说明 展示博客(单独一篇博客) 晚交 - 0分 迟交 ...

  7. 团队项目beta 汇总

    一.冲刺计划安排 http://www.cnblogs.com/KKlist/p/6864124.html 二.七天的敏捷冲刺 第一天(2017.05.19) http://www.cnblogs.c ...

  8. 团队作业4----第一次项目冲刺(Alpha版本)4.25

    a.提供当天站立式会议照片 会议内容: ①:对有的接口编写遇到的困难,由于基础问题,建议百度,谷歌现成的接口 ②:课程较多,时间不够,任务的调整以及进度的调整 b. 每个人的工作 每个人在尽量完成自己 ...

  9. 团队作业8——第二次项目冲刺(Beta阶段)5.27

    1.当天站立式会议照片 会议内容: 本次会议为第七次会议 本次会议在陆大楼2楼召开,本次会议内容: ①:检查总结上次任务完成情况 ②:安排今天的分工 ③:对昨天的问题进行讨论 2. 每个人的工作 (有 ...

  10. JAVA基础第七组(5道题)

    31.题目:将一个数组逆序输出.              1.程序分析:用第一个与最后一个交换. package com.niit.homework1; /** * @author: Annie * ...