The area 积分积分
Description
Note: The point P1 in the picture is the vertex of the parabola.
Input
Each test case contains three intersectant points which shows in the picture, they are given in the order of P1, P2, P3. Each point is described by two floating-point numbers X and Y(0.0<=X,Y<=1000.0).
Output
Sample Input
Sample Output
#include <iostream>
#include <math.h>
#include <stdio.h>
#include <string.h>
using namespace std;
struct point
{
double x,y;
} p1,p2,p3;
double a,b,c,a1,b1;
double F(double x)
{
return fabs(a*(x-b)*(x-b)+c-a1*x-b1);
}
void init()
{
b = p1.x;
c = p1.y;
a = (p2.y - c) / (p2.x - b) / (p2.x - b);
a1 = (p3.y - p2.y) / (p3.x - p2.x);
b1 = p2.y - a1 * p2.x;
//cout<<a<<" "<<b<<" "<<c<<" "<<a1<<" "<<b1<<" "<<endl;
}
//三点辛普森公式
double simpson(double width,double fa,double fb,double fc)
{
return (fb+fa+*fc)*width/;
} //自适应simpson公式递归过程
double asr(double a,double b,double eps,double A)
{
double c=(a+b)/;
double fa,fb,fc,L,R;
fa=F(a);
fb=F(b);
fc=F(c);
L=simpson(c-a,fa,fc,F((c+a)/));
R=simpson(b-c,fc,fb,F((b+c)/));
if(fabs(L+R-A)<=*eps) return L+R+(L+R-A)/;
return asr(a,c,eps/,L)+asr(c,b,eps/,R);
}
double asr1(double a,double b,double eps)
{
return asr(a,b,eps,simpson(b-a,F(a),F(b),F((b+a)/)));
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lf%lf",&p1.x,&p1.y);
scanf("%lf%lf",&p2.x,&p2.y);
scanf("%lf%lf",&p3.x,&p3.y);
init();
printf("%.2lf\n",asr1(p2.x,p3.x,0.0000001));
}
}
The area 积分积分的更多相关文章
- HDU1071 The area 【积分】
The area Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- The area (hdu1071)积分求面积
The area Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- HDU - 1071 - The area - 高斯约旦消元法 - 自适应辛普森法积分
http://acm.hdu.edu.cn/showproblem.php?pid=1071 解一个给定三个点的坐标二次函数某区域的积分值. 设出方程之后高斯消元得到二次函数.然后再消元得到直线. 两 ...
- SPOJ CIRU The area of the union of circles ——Simpson积分
[题目分析] 圆的面积并. 直接Simpson积分,(但是有计算几何的解法,留着flag). simpson积分,如果圆出现了不连续的情况,是很容易出事情的.(脑补一下) 但是没有什么办法,本来就是一 ...
- hdu-5858 Hard problem(数学)
题目链接: Hard problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
- Monte Carlo 数值积分
var amount = 0.0d; var hitTheTargetCount = 0.0d; var M = 2.0d; var rnd=new Random(); ; i < ; i++) ...
- LaTeX 中插入数学公式
一.常用的数学符号 1.小写希腊字母 \alpha \nu \beta \xi \gamma o \delta \pi \epsilon \rho \zeta \sigma \eta \tau \th ...
- IOS内存泄漏
1. . - (void)viewDidLoad { [superviewDidLoad]; self.view.frame=CGRectMake(, , , ); NSArray *title1=[ ...
- 用Javascript大批量收集网站数据
最近为了写论文,要大批量收集慕课网的相关用户数据(因为用户个人主页是公开的),故而写了一个插件进行收集.需要在慕课网控制台输入.最后收集了3000多份数据. /* 收集项 收集标准 用户编号 慕课网用 ...
随机推荐
- links
http://stackoverflow.com/questions/23469784/com-fasterxml-jackson-databind-exc-unrecognizedpropertye ...
- iOS 环信集成问题(连文档都不说明的坑。。)
首先,关于环信SDK的下载和一些依赖库的添加,在此我就不做详细介绍,(http://www.easemob.com/download/im)附上环信官网文档,可以看一下,上面都可以下载,也有相关配置介 ...
- 第1阶段——uboot分析之仿照bootm制作hello命令(7)
仿照bootm命令生成来制作一个hello命令,功能:打印出hello,world!和参数值 1.点击New File ,创建cmd_hello.c将./common/cmd_bootm.c的头文件复 ...
- OSI与TCP/IP网络模型分层
学习linux的人,都会接触到一些网络方面的知识.作为一个linux方面的萌新,今天,小编就接触了OSI模型和TCP/IP协议栈,那么什么是OSI模型呢? OSI模型,开放式系统互联通信参 ...
- MySQL (八)-- 事务、变量、触发器
1 事务 需求:有一张银行账户表,A用户给B用户转账,A账户先减少,B账户增加,但是A操作完之后断电了. 解决方案:A减少钱,但是不要立即修改数据表,B收到钱之后,同时修改数据表. 事务:一系列要发生 ...
- unity3D HTC VIVE开发-物体高亮功能实现
在VR开发时,有时需要用到物体高亮的功能.这里使用Highlighting System v3.0.1.unitypackage插件实现. Highlighting System v3.0.1的介绍访 ...
- Python并发编程协程(Coroutine)之Gevent
Gevent官网文档地址:http://www.gevent.org/contents.html 基本概念 我们通常所说的协程Coroutine其实是corporate routine的缩写,直接翻译 ...
- Beta阶段冲刺日志集合贴
[Beta]Daily Scrum Meeting--Day1:http://www.cnblogs.com/RunningGuys/p/6890738.html [Beta]Daily Scrum ...
- 控制结构(10) 指令序列(opcode)
// 上一篇:管道(pipeline) 发现问题 在一个正式项目的开发周期中,除了源代码版本控制外,还存在着项目的配置/编译/打包/发布等各种高频但非"核心"的脚本代码.职业程序员 ...
- 201521123024《Java程序设计》第8周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 本次作业题集集合 1.List中指定元素的删除(题目4-1) 1.1 实验总结 注意conve ...