先来介绍一下线段树。

线段树是一个把线段,或者说一个区间储存在二叉树中。如图所示的就是一棵线段树,它维护一个区间的和。

蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这段区间的和。

比如说线段树1号节点表示[1,5]区间,它的值是13,也就是原数组1号位到5号位所有数字加起来的和。

不难发现线段树的下标有这样的性质:

1. 设一个节点的下号是o,那么它的左子树是o*2,右子树是o*2+1。

2. 线段树的大小是原数组的大小*2-1。

3. 线段树叶节点表示区间的长度为1,也就是一个数字,此时区间的左边界=区间的右边界。

但是我们实际使用的时候,线段树是用一个长度为原数组大小4倍的数组储存的,因为方便处理,防止访问叶节点时下标越界。

它支持几种操作:

1. 修改一个点的值

2. 将一个区间加上或减去某个数

3. 查询一个区间的和(乘积也可以),最大/最小值

4. 将一个区间值改变成某个大于0的数

以上时间复杂度都是logn。

建立线段树:

这里我采用递归的方式。在函数内设3个参数,这个线段树节点的下标o,它表示的左区间L,又区间R。从根节点开始递归,如果L=R,就是走到了叶节点(根据性质3),那么该点就是原数组第L(或R)位的值,否则分成两个区间,递归它的左右子树。

代码如下:

 void init(int o,int L,int R)
{
if(L==R) sumv[o]=A[L]; //A[]是原数组,sumv[]是线段树数组
else
{
int M=(L+R)/;
init(o*,L,M);
init(o*+,M+,R);
sumv[o]=sumv[o*]+sumv[o*+];
}
}

这里的sumv是求和线段树数组,我以这个为例。当然如果是维护区间最大/最小,那么第9行的代码应该是左右子树的最大/最小值。

调用:

init(1,1,n);

// 1,n是总区间。

点修改:

与建树的过程类似,从根节点开始,一直递归到叶节点,然后直接修改,完成之后,更新sumv值就可以了。

如果把修改原数组p号位的值修改为v。

代码:

 int p,v;

 void update(int o,int L,int R)
{
if(L==R) sumv[o]=v;
else
{
int M=(L+R)/;
if(p<=M) update(o*,L,M); else update(o*+,M+,R);
sumv[o]=sumv[o*]+sumv[o*+];
}
}

调用:

先把p,和v赋值好,然后直接调用即可

p=x,v=y;//x,y是你要赋的值

update(1,1,n);

查询区间的和:

还是与上面类似。从根节点开始递归。如果这一层的区间[L,R]包含于要求的区间[y1,y2],那么就把这一层的值累加,否则就访问它的子树,把这个区间一份为二。

如果它的子树表示的区间与要求的区间有交集,就说明有需要访问,否则就不用。

代码:

 int y1,y2,ans;
void query(int o,int L,int R)
{
if(y1<=L && R<=y2) ans+=sumv[o];
else
{
int M=(L+R)/;
if(y1<=M) query(o*,L,M);
if(y2>M) query(o*+,M+,R);
}
}

调用:

把要查找的区间y1,y2赋值好,并把存储答案的ans清0,,再调用即可

y1=x,y2=y,ans=0;//注意ans一定要初始化,最后查出来的答案是保存在ans里面的。

query(1,1,n);

点修改的说明就到此。

测试的题目:codevs 1080 线段树练习

链接:http://codevs.cn/problem/1080/

附代码:

 #include<cstdio>
#include<iostream>
using namespace std;
const int maxn=; int A[maxn],sumv[maxn*],n,m; void init(int o,int L,int R)
{
if(L==R) sumv[o]=A[L];
else
{
int M=(L+R)/;
init(o*,L,M);
init(o*+,M+,R);
sumv[o]=sumv[o*]+sumv[o*+];
}
} int p,v;
void update(int o,int L,int R)
{
if(L==R) sumv[o]=v;
else
{
int M=(L+R)/;
if(p<=M) update(o*,L,M); else update(o*+,M+,R);
sumv[o]=sumv[o*]+sumv[o*+];
}
} int y1,y2,ans;
void query(int o,int L,int R)
{
if(y1<=L && R<=y2) ans+=sumv[o];
else
{
int M=(L+R)/;
if(y1<=M) query(o*,L,M);
if(y2>M) query(o*+,M+,R);
}
} int main()
{
cin>>n;
for(int i=;i<=n;i++) cin>>A[i];
init(,,n);
cin>>m;
for(int i=,k,x,y;i<=m;i++)
{
cin>>k>>x>>y;
if(k==)
{
p=x,v=A[p]+y;
A[p]=v;
update(,,n);
}
else
{
y1=x,y2=y,ans=;
query(,,n);
cout<<ans<<endl;
}
}
return ;
}

codevs 1080 线段树点修改的更多相关文章

  1. codevs 1080 线段树练习 CDQ分治

    codevs 1080 线段树练习 http://codevs.cn/problem/1080/  时间限制: 1 s  空间限制: 128000 KB   题目描述 Description 一行N个 ...

  2. codevs 1080 线段树练习--用树状数组做的

    1080 线段树练习  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 一行N个方格,开始每个格子里都有一个整数.现在动态 ...

  3. Codevs 1080 线段树练习(CDQ分治)

    1080 线段树练习  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 一行N个方格,开始每个格子里都有 ...

  4. codevs——1080 线段树练习

    1080 线段树练习  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 一行N个方格,开始每个格子里都有 ...

  5. codevs 1080 线段树练习

    链接:http://codevs.cn/problem/1080/ 先用树状数组水一发,再用线段树水一发 树状数组代码:84ms #include<cstdio> #include< ...

  6. Codevs 1080 线段树联系

    题目描述 Description 一行N个方格,开始每个格子里都有一个整数.现在动态地提出一些问题和修改:提问的形式是求某一个特定的子区间[a,b]中所有元素的和:修改的规则是指定某一个格子x,加上或 ...

  7. codevs 1080 线段树练习(线段树)

    题目: 题目描述 Description 一行N个方格,开始每个格子里都有一个整数.现在动态地提出一些问题和修改:提问的形式是求某一个特定的子区间[a,b]中所有元素的和:修改的规则是指定某一个格子x ...

  8. wikioi 1080 线段树练习 树状数组

    1080 线段树练习 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond       题目描述 Description 一行N个方格,开始每个格子里都有一个整数.现 ...

  9. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

随机推荐

  1. 设计模式--观察者模式初探和java Observable模式

    初步认识观察者模式 观察者模式又称为发布/订阅(Publish/Subscribe)模式,因此我们可以用报纸期刊的订阅来形象的说明: 报社方负责出版报纸. 你订阅了该报社的报纸,那么只要报社发布了新报 ...

  2. MySQL笔记---视图,存储过程, 触发器的使用入门

    大二学数据库的时候,只是隐约听到老师提起过视图啊,存储过程啊,触发器啊什么的,但只是淡淡的记住了名字,后来自己做些小项目,小程序,也没有用上过,都只是简单的建表,关联表之类的,导致我对这些东西的理解只 ...

  3. Android之图片加载框架Fresco基本使用(二)

    PS:最近看到很多人都开始写年终总结了,时间过得飞快,又到年底了,又老了一岁. 学习内容: 1.进度条 2.缩放 3.ControllerBuilder,ControllerListener,Post ...

  4. Javascript中关于cookie的那些事儿

    Javascript-cookie 什么是cookie? 指某些网站为了辨别用户身份.进行session跟踪而储存在用户本地终端上的数据(通常经过加密).简单点来说就是:浏览器缓存. cookie由什 ...

  5. 灾难 bzoj 2815

    灾难(1s 128MB)catas [样例输入] 5 0 1 0 1 0 2 3 0 2 0 [样例输出] 4 1 0 0 0 题解: 主要算法:拓扑排序:最近公共祖先(Lca): 先跑出拓扑序 我们 ...

  6. spider RPC管理接口

    为了在独立管理模式下尽可能的容易运行时排查问题,spider中间件提供了一系列restful api用于动态管理当前节点的路由,下游节点等.目前支持的RESTFUL API如下所示: 功能 服务号 R ...

  7. SQLSERVER截取字符串

    ) SET @Name = '\EXAM\061023478874' DECLARE @Position INT --sql first indexof SET @Position = CHARIND ...

  8. JQuery效果-淡入淡出、滑动、动画

    一.JQuery Fading方法 JQuery 有四种fade方法 1.fadeIn() 淡入                       对应也有$(selector).fadeIn(speed, ...

  9. 深入理解javascript选择器API系列第二篇——getElementsByClassName

    × 目录 [1]使用 [2]classList [3]扩展 前面的话 既然有getElementById()和getElementsByTagName()方法,为什么没有getElementsByCl ...

  10. Android中使用AsyncTask实现文件下载以及进度更新提示

    Android提供了一个工具类:AsyncTask,它使创建需要与用户界面交互的长时间运行的任务变得更简单.相对Handler来说AsyncTask更轻量级一些,适用于简单的异步处理,不需要借助线程和 ...