Description

为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。

只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。

Input

第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。

Output

输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。

Sample Input

【输入样例1】
4 5
1 2 19 1
2 3 8 12
2 4 12 15
1 3 17 8
3 4 1 17
【输入样例2】
3 1
1 2 1 1

Sample Output

【输出样例1】
32
【样例说明1】
如果小E走路径1→2→4,需要携带19+15=34个守护精灵;
如果小E走路径1→3→4,需要携带17+17=34个守护精灵;
如果小E走路径1→2→3→4,需要携带19+17=36个守护精灵;
如果小E走路径1→3→2→4,需要携带17+15=32个守护精灵。
综上所述,小E最少需要携带32个守护精灵。

【输出样例2】
-1
【样例说明2】
小E无法从1号节点到达3号节点,故输出-1。

HINT

2<=n<=50,000

0<=m<=100,000

1<=ai ,bi<=50,000

Source

题目即要求使1和n连通的使a的最大值+b的最大值最小。。。

对于这种一条边有两种权限制的题目,一般都是限制住一种边的条件再对另一条边进行处理。。。

这题的暴力做法还是可以YY的。。。

首先最大边最小是显然满足最小生成树的性质的。。。

所以按a的大小加入满足a的边,再以这些边跑按照b跑Kruskal。。。竟然有70分。。。

然后我傻逼的YY了一个二分a的高骗,竟然骗了80分(这个答案显然是没有单调性的,应该会WA飞,然而有80分,时间贼快)

正解可以用SPFA动态加边也可以用LCT。。。。。

如果要用LCT的话就要知道一个叫做另类MST的鬼东西。。。网管的水管局长PPT上有。。。

大致做法就是先随意构一棵生成树,不断加边,如果形成了环,就把环上边权最大的删掉。。。

这样的话我们就可以按a的大小加入满足a的边然后动态维护加了边之后的b的最小生成树。。。这样的好处就是每次无需重新构MST。。。

那么对于这个操作LCT显然是可以胜任的。。。

这题还要用到一个很巧妙的东西,就是把边作为一个点加进去。。因为LCT并不能维护边权。。。

对与边i就是类似这样:lnk(i+n,e[i].x),lnk(i+n,e[i].y);

下面附上代码:

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=;
int gi()
{
int x=;
char ch=getchar();
while(ch<''||ch>'') ch=getchar();
while(ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x;
}
int fa[N],c[N][],st[N],v[N],maxn[N],n,m,ans=;
bool rev[N];
struct data
{
int u,v,a,b;
} edge[N];
bool isroot(int x)
{
return c[fa[x]][]!=x&&c[fa[x]][]!=x;
}
void modify(int x)
{
int l=c[x][],r=c[x][];
maxn[x]=x;
if(v[maxn[x]]<v[maxn[l]]) maxn[x]=maxn[l];
if(v[maxn[x]]<v[maxn[r]]) maxn[x]=maxn[r];
}
void pushdown(int x)
{
int l=c[x][],r=c[x][];
if(rev[x])
{
rev[x]^=;rev[l]^=;rev[r]^=;
swap(c[x][],c[x][]);
}
}
void rotate(int x)
{
int y=fa[x],z=fa[y],l,r;
if(c[y][]==x)l=;else l=;r=l^;
if(!isroot(y))
{
if(c[z][]==y)c[z][]=x;else c[z][]=x;
}
fa[x]=z;fa[y]=x;fa[c[x][r]]=y;
c[y][l]=c[x][r];c[x][r]=y;
modify(y);modify(x);
}
void splay(int x)
{
int top=;st[++top]=x;
for(int i=x;!isroot(i);i=fa[i])
{
st[++top]=fa[i];
}
for(int i=top;i;i--) pushdown(st[i]);
while(!isroot(x))
{
int y=fa[x],z=fa[y];
if(!isroot(y))
{
if((c[y][]==x)^(c[z][]==y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
int t=;
while(x)
{
splay(x);
c[x][]=t;
t=x;x=fa[x];
}
}
void rever(int x)
{
access(x);splay(x);rev[x]^=;
}
void lnk(int x,int y)
{
rever(x);fa[x]=y;splay(x);
}
void cut(int x,int y)
{
rever(x);access(y);splay(y);c[y][]=fa[x]=;
}
int query(int x,int y)
{
rever(x);access(y);splay(y);
return maxn[c[y][]];
}
int find(int x)
{
access(x);splay(x);
int y=x;
while(c[y][]) y=c[y][];
return y;
}
bool cmp(data a,data b)
{
return a.a<b.a;
}
int main()
{
n=gi();m=gi();
for(int i=; i<=m; i++)
{
edge[i].u=gi();edge[i].v=gi();edge[i].a=gi();edge[i].b=gi();
}
for(int i=;i<=m+n;i++) maxn[i]=i;
sort(edge+,edge++m,cmp);
for(int i=; i<=m; i++)
{
int x=edge[i].u,y=edge[i].v;
if(find(x)!=find(y))
{
v[n+i]=edge[i].b;
lnk(x,n+i);lnk(y,n+i);
}
else
{
int maxm=query(x,y);
if(edge[i].b<v[maxm])
{
cut(maxm,edge[maxm-n].u);
cut(maxm,edge[maxm-n].v);
v[n+i]=edge[i].b;
lnk(x,n+i);lnk(y,n+i);
}
}
if(find()==find(n)) ans=min(ans,edge[i].a+v[query(,n)]);
}
if(ans==) cout<<-<<endl;
else cout<<ans;
}

bzoj 3669: [Noi2014] 魔法森林 LCT版的更多相关文章

  1. BZOJ 3669: [Noi2014]魔法森林( LCT )

    排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...

  2. bzoj 3669: [Noi2014]魔法森林 (LCT)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 题面: 3669: [Noi2014]魔法森林 Time Limit: 30 Sec  ...

  3. BZOJ 3669: [Noi2014]魔法森林 [LCT Kruskal | SPFA]

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  4. BZOJ 3669: [Noi2014]魔法森林(lct+最小生成树)

    传送门 解题思路 \(lct\)维护最小生成树.我们首先按照\(a\)排序,然后每次加入一条边,在图中维护一棵最小生成树.用并查集判断一下\(1\)与\(n\)是否联通,如果联通的话就尝试更新答案. ...

  5. bzoj 3669: [Noi2014]魔法森林

    bzoj 3669: [Noi2014]魔法森林 Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号 ...

  6. bzoj 3669: [Noi2014]魔法森林 动态树

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 202[Submit][Status] ...

  7. bzoj 3669: [Noi2014]魔法森林 -- 动点spfa

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MB 动点spfa Description 为了得到书法大家的真传,小E同学下定决心 ...

  8. bzoj3669: [Noi2014]魔法森林 lct版

    先上题目 bzoj3669: [Noi2014]魔法森林 这道题首先每一条边都有一个a,b 我们按a从小到大排序 每次将一条路劲入队 当然这道题权在边上 所以我们将边化为点去连接他的两个端点 当然某两 ...

  9. [BZOJ 3669] [Noi2014] 魔法森林 【LCT】

    题目链接:BZOJ - 3669 题目分析 如果确定了带 x 只精灵A,那么我们就是要找一条 1 到 n 的路径,满足只经过 Ai <= x 的边,而且要使经过的边中最大的 Bi 尽量小. 其实 ...

随机推荐

  1. centos7下部署Django(nginx+uwsgi+python3+django)

    系统版本 centos7 python版本 使用官方python3.6.3正式版 django版本 使用本文发布时最新的1.11.7 uwsgi版本 使用本文发布时最新的2.0.15 nginx版本 ...

  2. SpringBoot错误求解决

    .   ____          _            __ _ _ /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \( ( )\___ | '_ | '_| | ...

  3. 尚未解决的selenium 定位

    自从入职以来,一直在写selenium自动化脚本,可是最近因为一个问题止步不前.可是也不能一直原地踏步呀在这里把问题先记录一下,免得以后忘了. 前景: 做一个表单的提交,点击按钮,执行某函数,若表单中 ...

  4. sql查询语句报错处理——ERROR: failed to find conversion function from unknown to text

    今天遇到写存储过程遇到的一个小问题,在查询语句中使用到了自定义的数当做列的值,然后想给这一列起一个别名 ,就直接在后面用了 as 别名.执行存储过程,存储过程报错,ERROR: failed to f ...

  5. OC中只有重写没有重载

    一.类的继承 Objective-c中类的继承与C++类似,不同的是Objective-c不支持多重继承,一个类只能有一个父类,单继承使Objective-c的继承关系很简单,易于管理程序. 二.方法 ...

  6. 再学习之Spring(依赖注入)

    一.概述 Spring框架是以 简化Java EE应用程序的开发 为目标而创建的.Spring可以实现很多功能,但是这些功能的底层都依赖于它的两个核心特性,也就是依赖注入和面向切面编程.几乎Sprin ...

  7. php 写程序求三个数的最大值

    最简单的调用PHP自带的max函数即可:echo max(1,2,3,4,5);如果要自定义函数的话:function test($a,$b,$c){ return $a > $b ?($a & ...

  8. 深入理解javascript函数进阶系列第三篇——函数节流和函数防抖

    前面的话 javascript中的函数大多数情况下都是由用户主动调用触发的,除非是函数本身的实现不合理,否则一般不会遇到跟性能相关的问题.但在一些少数情况下,函数的触发不是由用户直接控制的.在这些场景 ...

  9. NOIP2017普及组初赛解析

    首发于订阅号 嗨编程,这是一个以嗨为目标的编程订阅号(仅仅是目标而已),扫码可关注,不定期更.

  10. SAP GUI 750 安装包 及 补丁3 共享

    SAP GUI 750 安装包 及 补丁3 共享 链接: https://pan.baidu.com/s/1hstkfUs%20 密码: ggbz -------------------------- ...