poj2942(双联通分量,交叉染色判二分图)
题意:一些骑士,他们有些人之间有矛盾,现在要求选出一些骑士围成一圈,圈要满足如下条件:1.人数大于1。2.总人数为奇数。3.有仇恨的骑士不能挨着坐。问有几个骑士不能和任何人形成任何的圆圈。
思路:首先反向建立补图,然后问题转换成在图中找奇圈,圈肯定出现在双联通分量中,则求出图的双联通分量,又通过特性知道,一个双联通分量有奇圈则其中的点都可以出现在一个奇圈中。而对于奇圈的判定可以用交叉染色判断是非为二分图,二分图中肯定无奇圈,这里用tarjan算法得出割边(先将点入队),确定双联通分量的根节点,(对于队列中的点)然后进行染色判定,最后标记odd[]代表需要删除的点。
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define MAXN 1004
#define MAXM 1001000 int n,m,tot,count,top;
int first[MAXN],DFN[MAXN],Low[MAXN],vis[MAXN],col[MAXN],mark[MAXN],stack[MAXM],odd[MAXN];
int G[MAXN][MAXN];
struct Edge
{
int st,to,next,vis;
}edge[2*MAXM];
void addedge(int a,int b)
{
edge[tot].to=b;
edge[tot].st=a;
edge[tot].next=first[a];
edge[tot].vis=0;
first[a]=tot++;
}
int find(int s)
{
for(int i=first[s];i!=-1;i=edge[i].next)
{
int t=edge[i].to;
if(mark[t])
{
if(col[t]==-1)
{
col[t]=!col[s];
return find(t);
}
else if(col[t]==col[s]) return 1;
}
}
return 0;
}
void color(int s)
{
int i;
memset(mark,0,sizeof(mark));
do{
i=stack[top--];
mark[edge[i].st]=1;
mark[edge[i].to]=1;
}while(edge[i].st!=s);
memset(col,-1,sizeof(col));
col[s]=0;
if(find(s))
{
for(int i=1;i<=n;i++)
{
if(mark[i])
odd[i]=1;
}
}
}
void dfs(int s)
{
DFN[s]=Low[s]=++count;
for(int i=first[s];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].vis)continue;
edge[i].vis=edge[i^1].vis=1;
stack[++top]=i;
if(!DFN[v])
{
dfs(v);
Low[s]=min(Low[s],Low[v]);
if(Low[v]>=DFN[s])color(s);
}
else
{
Low[s]=min(Low[s],DFN[v]);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m),n||m)
{
memset(G,0,sizeof(G));
for(int i=1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
G[a][b]=1;
G[b][a]=1;
}
tot=0;
memset(first,-1,sizeof(first));
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
if(G[i][j]==0)
{
addedge(i,j);
addedge(j,i);
}
}
}
memset(DFN,0,sizeof(DFN));
memset(odd,0,sizeof(odd));
count=0;top=0;
for(int i=1;i<=n;i++)
{
if(!DFN[i])
dfs(i);
}
int ans=0;
for(int i=1;i<=n;i++)
{
if(!odd[i])
ans++;
}
printf("%d\n",ans);
}
return 0;
}
poj2942(双联通分量,交叉染色判二分图)的更多相关文章
- lightoj 1300 边双联通分量+交叉染色求奇圈
题目链接:http://lightoj.com/volume_showproblem.php?problem=1300 边双连通分量首先dfs找出桥并标记,然后dfs交叉着色找奇圈上的点.这题只要求在 ...
- POJ2942 Knights of the Round Table【Tarjan点双联通分量】【二分图染色】【补图】
LINK 题目大意 有一群人,其中有一些人之间有矛盾,现在要求选出一些人形成一个环,这个环要满足如下条件: 1.人数大于1 2.总人数是奇数 3.有矛盾的人不能相邻 问有多少人不能和任何人形成任何的环 ...
- 训练指南 UVALive - 3523 (双联通分量 + 二分图染色)
layout: post title: 训练指南 UVALive - 3523 (双联通分量 + 二分图染色) author: "luowentaoaa" catalog: tru ...
- 【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)
[POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS Memory Limit: 65536K Total Su ...
- POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug
题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...
- 【POJ2942】Knights of the Round Table(二分图 点双联通分量)
题目链接 大意 给定\(N\)个点与\(M\)个关系,每个关系表示某两个点间没有直接的边相连,求不在所有奇环上的点的个数. (\(1\le N\le 1e3,1\le M\le 1e6\)) 思路 考 ...
- Spoj 2878 KNIGHTS - Knights of the Round Table | 双联通分量 二分图判定
题目链接 考虑建立原图的补图,即如果两个骑士不互相憎恨,就在他们之间连一条无向边. 显而易见的是,如果若干个骑士在同一个点数为奇数的环上时,他们就可以在一起开会.换句话说,如果一个骑士被一个奇环包含, ...
- 【洛谷 SP2878】Knights of the Round Table(双联通分量)
先放这吧,没时间写,明天再补 "明天到了" 题目链接 题意:求不在任何奇环内的点的数量. Tarjan求点双联通分量,然后再染色判断是不是二分图就好了. 只是不懂为什么Tarjan ...
- 『Tarjan算法 无向图的双联通分量』
无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...
随机推荐
- c++STL(栈、队列)
栈stack -先入后出FILO 栈可以理解为一个坑,先掉坑里的被压在下面,等上面的走了才能出来 头文件 <stack> 入栈 push(某东西); 栈顶元素出栈 pop(); 是否为空 ...
- 从.net到java,记录下这三个月的工作
从事.NET开发已经4个年头,经过十余个项目的学习与沉淀,终于有了一套自己熟悉并且相对完善的技术体系,面对未知,不再惧怕.期间完成并广泛用于公司项目的作品包括: abp的二次开发框架BodeAbp 基 ...
- 手动修复IAT
现在我们已经了解了IAT的的工作原理,现在我们来一起学习手动修复IAT,一方面是深入了解运行过程一方面是为了避免遇到有些阻碍自动修复IAT的壳时不知所措. 首先我们用ESP定律找到加了UPX壳后的OE ...
- nodejs 文件读取一行
作者QQ:1095737364 QQ群:123300273 欢迎加入! 废话没有,直接上代码: app.get('/company', function (req, res, nex ...
- iPhone 尺寸
http://tool.lanrentuku.com/guifan/ui.html 这是本人复制的链接,,
- Vue.js 计算属性的秘密
计算属性是一个很邪门的东西,只要在它的函数里引用了 data 中的某个属性,当这个属性发生变化时,函数仿佛可以嗅探到这个变化,并自动重新执行. 上述代码会源源不断的打印出 b 的值.如果希望 a 依赖 ...
- KMS注册
--KMS注册 -------------2014/03/25 --Read this First http://social.technet.microsoft.com/wiki/contents/ ...
- Android WebView 调试方法
调试Android WebView中的h5页面,通常就是通过alert和抓包工具来定位问题,效率低且无法直接调试样式或打断点,可谓是事倍功半.本文介绍一下我在项目中使用的新方法,能够通过chrome的 ...
- LINUX系统自动化部署shell脚本
#!/bin/shsudo /etc/init.d/tomcatstopwaitsudo rm -rf /opt/tomcat7/work/*waitsudo rm -rf /opt/tomcat7/ ...
- kali linux 2.0下搭建DVWA渗透测试演练平台
DVWA (Dam Vulnerable Web Application)DVWA是用PHP+MySQL编写的一套用于常规WEB漏洞教学和检测的WEB脆弱性测试程序.包含了SQL注入.XSS.盲注等常 ...