谨以此笔记记录jjw高三党四个月学习NOI的历程..如转载请标记出处

Floyd算法:

  默认是业界最短路最简单的写法,并且只有五行。时间复杂度为O(N3),空间复杂度为O(N2)。

 ;k<=n;k++){
     ;i<=n;i++){
         ;j<=n;j++){
             if(f[i][j]>f[i][k]+f[k][j]){
                 f[i][j]=f[i][k]+f[k][j];
             }
         }
     }
 }

  简单来说就是通过另一个点个点来收缩一个点到一个点的距离,如果f[i][j]>f[i][k]+f[k][j]的话就把f[i][j]变成f[i][k]+f[k][j]

  emm...再简单的一个例子就是(1,2)=10,但是(1,3)+(3,2)=5,那么就可以通过点3把(1,2)的距离变为5。

  还是很简单的吧...

Dijkstra算法:

  刚刚的Floyd能够通过空间复杂度为On3的方法算出所有点到所有点的最短路,但是这样做在某些题目中会炸掉或者T掉,那么怎么解决单源最短路径?

  (其实所有的最短路径都可以从啊哈磊先生的啊哈算法中找到详细讲解)

  在我理解下的Dijkstra分为以下几个部分:

  1、在二维图中标记已知路径,将位置路径设为inf

 ;i<=n;i++){
         ;j<=n;j++){
             if(i==j){
                 a[i][j]=;
             }else{
                 a[i][j]=inf;
             }
         }
     }//inf一般为0xf
     ;i<=m;i++){
         int v,r,w;
         scanf("%d%d%d",&v,&r,&w);
         if(a[v][r]>w){
             a[v][r]=w;
         }//这里一定要注意是否为有向边还是无向

     }

2、数组dis和数组book

     ;i<=n;i++){
         f[i]=a[][i];
     }
     b[]=;

3、主要算法:

     ;i<=n;i++){
         ;
         ;j<=n;j++){
             if(!b[j]&&f[j]<minx){
                 minx=f[j];
                 u=j;
             }
         }
             b[u]=;
             ;j<=n;j++){
                 if(!b[j]){
                     if(f[j]>f[u]+a[u][j]){
                         f[j]=f[u]+a[u][j];
                     }
                 }
             }
     }

解释以下:book数组用来记录松弛每个边,然后在循环每一个点中依次松弛从这个点到其他最小一个点的路径长短,比如前7行就是在找距离1号最短距离的X号,然后对X号松弛

第九行将准备松弛的点固定,然后松弛其它边。

应该是比较难理解的..不过多做几道题就差不多会写了。

题目:洛谷1576,2384

[板子]Floyd&Dijkstra的更多相关文章

  1. 最短路(floyd/dijkstra/bellmanford/spaf 模板)

    floyd/dijkstra/bellmanford/spaf 模板: 1. floyd(不能处理负权环,时间复杂度为O(n^3), 空间复杂度为O(n^2)) floyd算法的本质是dp,用dp[k ...

  2. 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)

    几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floyd-Warshall算法(Floyd ...

  3. UVA-10269 (floyd+dijkstra)

    题意: 现在有A个村庄,B个城堡,现在要从1到A+B,有M条路,魔法鞋最多能用K次,每次的长度不超过L,且起点和终点一定是村庄和城堡,而且每次使用魔法鞋不能穿过城堡,问最短时间是多少; 思路: 先用F ...

  4. HDU1874畅通工程续(floyd||dijkstra)

    看了看floyd和dijkstra,然后就找了两个练习来捉 #include<iostream> #include<stdio.h> #include<string.h& ...

  5. POJ 1502 MPI Maelstrom( Spfa, Floyd, Dijkstra)

    题目大意: 给你 1到n ,  n个计算机进行数据传输, 问从1为起点传输到所有点的最短时间是多少, 其实就是算 1 到所有点的时间中最长的那个点. 然后是数据 给你一个n 代表有n个点, 然后给你一 ...

  6. 最短路问题 Floyd+Dijkstra+SPFA

    参考博客:https://blog.csdn.net/qq_35644234/article/details/60875818 题目来源:http://acm.hdu.edu.cn/showprobl ...

  7. hdu 2066 ( 最短路) Floyd & Dijkstra & Spfa

    http://acm.hdu.edu.cn/showproblem.php?pid=2066 今天复习了一下最短路和最小生成树,发现居然闹了个大笑话-----我居然一直写的是Floyd,但我自己一直以 ...

  8. Floyd && Dijkstra +邻接表 +链式前向星(真题讲解来源:城市路)

    1381:城市路(Dijkstra) 时间限制: 1000 ms         内存限制: 65536 KB提交数: 4066     通过数: 1163 [题目描述] 罗老师被邀请参加一个舞会,是 ...

  9. 最短路径算法总结(floyd,dijkstra,bellman-ford)

    继续复习数据结构和算法,总结一下求解最短路径的一些算法. 弗洛伊德(floyd)算法 弗洛伊德算法是最容易理解的最短路径算法,可以求图中任意两点间的最短距离,但时间复杂度高达\(O(n^3)\),主要 ...

随机推荐

  1. CSS 入门基础

    一.CSS 介绍什么是CSS CSS 指的是层叠样式表(Cascading StyleSheet).在网页制作时采用层叠样式表技术, 可以有效地对页面的布局.字体.颜色.背景和其它效果实现更加精确的控 ...

  2. mysql 时间函数 时间转换函数

    时间函数 Now 获取当前时间 current_timestamp 获取当前时间 localtimestamp 时间转换 UNIX_TIMESTAMP    "2009-09-15 00:0 ...

  3. Linux入门之常用命令(2)

    (三) 链接文件 ln [-s] [源文件] [目标文件]       -s表示符号链接 没有则是硬链接 硬链接是一个独立文件 (相当于一个副本) 符号链接是一个链接文件(相当于一个快捷方式) 但是修 ...

  4. 怎样使用自定义标签简化 js、css 引入?

    国庆将至,工作兴致全无,来总结点项目里平时不起眼干货. 前端引入 js .css 一般是这样: <script type="text/javascript" src=&quo ...

  5. POJ1083 Moving Tables(模拟)

    The famous ACM (Advanced Computer Maker) Company has rented a floor of a building whose shape is in ...

  6. php过滤textarea 中的换行符问题

    之前我写的替换代码是这样的 $content = str_replace('\r\n', '', $_POST['content']); 为了确保window和Linux的换行符都能去掉,改成这样的: ...

  7. Python实战之set学习笔记及简单练习

    ['__and__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__' ...

  8. Python学习手册 :Python 学习笔记第一天

    获取当前目录路径: import os os.getcwd() 在输入python程序时,尽量让不是嵌套结构的语句处于最左侧,要不然系统或许会出现"SyntaxError"错误 获 ...

  9. 如何开发webpack loader

    关于webpack 作为近段时间风头正盛的打包工具,webpack基本占领了前端圈.相信你都不好意思说不知道webpack. 有兴趣的同学可以参考下我很早之前的webpack简介 . 确实webpac ...

  10. 使用Xshell5连接虚拟机VMware中安装的CentOS7系统

    使用Xshell5连接VMware中安装的CentOS7系统 准备材料 Xshell 下载地址 VMware Workstation 12 Pro 下载地址 CentOS 7 64位系统 下载地址 安 ...