KMP算法&next数组总结
http://www.cnblogs.com/yjiyjige/p/3263858.html
KMP算法应该是每一本《数据结构》书都会讲的,算是知名度最高的算法之一了,但很可惜,我大二那年压根就没看懂过~~~
之后也在很多地方也都经常看到讲解KMP算法的文章,看久了好像也知道是怎么一回事,但总感觉有些地方自己还是没有完全懂明白。这两天花了点时间总结一下,有点小体会,我希望可以通过我自己的语言来把这个算法的一些细节梳理清楚,也算是考验一下自己有真正理解这个算法。
什么是KMP算法:
KMP是三位大牛:D.E.Knuth、J.H.Morris和V.R.Pratt同时发现的。其中第一位就是《计算机程序设计艺术》的作者!!
KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是我们平时常说的关键字搜索。模式串就是关键字(接下来称它为P),如果它在一个主串(接下来称为T)中出现,就返回它的具体位置,否则返回-1(常用手段)。
首先,对于这个问题有一个很单纯的想法:从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位。这有什么难的?
我们可以这样初始化:
之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致。如果一致就都向后移动,如果不一致,如下图:
A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤:
基于这个想法我们可以得到以下的程序:
1 /**
2
3 * 暴力破解法
4
5 * @param ts 主串
6
7 * @param ps 模式串
8
9 * @return 如果找到,返回在主串中第一个字符出现的下标,否则为-1
10
11 */
12
13 public static int bf(String ts, String ps) {
14
15 char[] t = ts.toCharArray();
16
17 char[] p = ps.toCharArray();
18
19 int i = 0; // 主串的位置
20
21 int j = 0; // 模式串的位置
22
23 while (i < t.length && j < p.length) {
24
25 if (t[i] == p[j]) { // 当两个字符相同,就比较下一个
26
27 i++;
28
29 j++;
30
31 } else {
32
33 i = i - j + 1; // 一旦不匹配,i后退
34
35 j = 0; // j归0
36
37 }
38
39 }
40
41 if (j == p.length) {
42
43 return i - j;
44
45 } else {
46
47 return -1;
48
49 }
50
51 }
上面的程序是没有问题的,但不够好!(想起我高中时候数字老师的一句话:我不能说你错,只能说你不对~~~)
如果是人为来寻找的话,肯定不会再把i移动回第1位,因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道主串前面只有一个A?因为我们已经知道前面三个字符都是匹配的!(这很重要)。移动过去肯定也是不匹配的!有一个想法,i可以不动,我们只需要移动j即可,如下图:
上面的这种情况还是比较理想的情况,我们最多也就多比较了再次。但假如是在主串“SSSSSSSSSSSSSA”中查找“SSSSB”,比较到最后一个才知道不匹配,然后i回溯,这个的效率是显然是最低的。
大牛们是无法忍受“暴力破解”这种低效的手段的,于是他们三个研究出了KMP算法。其思想就如同我们上边所看到的一样:“利用已经部分匹配这个有效信息,保持i指针不回溯,通过修改j指针,让模式串尽量地移动到有效的位置。”
所以,整个KMP的重点就在于当某一个字符与主串不匹配时,我们应该知道j指针要移动到哪?
接下来我们自己来发现j的移动规律:
如图:C和D不匹配了,我们要把j移动到哪?显然是第1位。为什么?因为前面有一个A相同啊:
如下图也是一样的情况:
可以把j指针移动到第2位,因为前面有两个字母是一样的:
至此我们可以大概看出一点端倪,当匹配失败时,j要移动的下一个位置k。存在着这样的性质:最前面的k个字符和j之前的最后k个字符是一样的。
如果用数学公式来表示是这样的
P[0 ~ k-1] == P[j-k ~ j-1]
这个相当重要,如果觉得不好记的话,可以通过下图来理解:
弄明白了这个就应该可能明白为什么可以直接将j移动到k位置了。
因为:
当T[i] != P[j]时
有T[i-j ~ i-1] == P[0 ~ j-1]
由P[0 ~ k-1] == P[j-k ~ j-1]
必然:T[i-k ~ i-1] == P[0 ~ k-1]
公式很无聊,能看明白就行了,不需要记住。
这一段只是为了证明我们为什么可以直接将j移动到k而无须再比较前面的k个字符。
好,接下来就是重点了,怎么求这个(这些)k呢?因为在P的每一个位置都可能发生不匹配,也就是说我们要计算每一个位置j对应的k,所以用一个数组next来保存,next[j] = k,表示当T[i] != P[j]时,j指针的下一个位置。
很多教材或博文在这个地方都是讲得比较含糊或是根本就一笔带过,甚至就是贴一段代码上来,为什么是这样求?怎么可以这样求?根本就没有说清楚。而这里恰恰是整个算法最关键的地方。
1 public static int[] getNext(String ps) {
2
3 char[] p = ps.toCharArray();
4
5 int[] next = new int[p.length];
6
7 next[0] = -1;
8
9 int j = 0;
10
11 int k = -1;
12
13 while (j < p.length - 1) {
14
15 if (k == -1 || p[j] == p[k]) {
16
17 next[++j] = ++k;
18
19 } else {
20
21 k = next[k];
22
23 }
24
25 }
26
27 return next;
28
29 }
这个版本的求next数组的算法应该是流传最广泛的,代码是很简洁。可是真的很让人摸不到头脑,它这样计算的依据到底是什么?
好,先把这个放一边,我们自己来推导思路,现在要始终记住一点,next[j]的值(也就是k)表示,当P[j] != T[i]时,j指针的下一步移动位置。
先来看第一个:当j为0时,如果这时候不匹配,怎么办?
像上图这种情况,j已经在最左边了,不可能再移动了,这时候要应该是i指针后移。所以在代码中才会有next[0] = -1;这个初始化。
如果是当j为1的时候呢?
显然,j指针一定是后移到0位置的。因为它前面也就只有这一个位置了~~~
下面这个是最重要的,请看如下图:
请仔细对比这两个图。
我们发现一个规律:
当P[k] == P[j]时,
有next[j+1] == next[j] + 1
其实这个是可以证明的:
因为在P[j]之前已经有P[0 ~ k-1] == p[j-k ~ j-1]。(next[j] == k)
这时候现有P[k] == P[j],我们是不是可以得到P[0 ~ k-1] + P[k] == p[j-k ~ j-1] + P[j]。
即:P[0 ~ k] == P[j-k ~ j],即next[j+1] == k + 1 == next[j] + 1。
这里的公式不是很好懂,还是看图会容易理解些。
那如果P[k] != P[j]呢?比如下图所示:
像这种情况,如果你从代码上看应该是这一句:k = next[k];为什么是这样子?你看下面应该就明白了。
现在你应该知道为什么要k = next[k]了吧!像上边的例子,我们已经不可能找到[ A,B,A,B ]这个最长的后缀串了,但我们还是可能找到[ A,B ]、[ B ]这样的前缀串的。所以这个过程像不像在定位[ A,B,A,C ]这个串,当C和主串不一样了(也就是k位置不一样了),那当然是把指针移动到next[k]啦。
有了next数组之后就一切好办了,我们可以动手写KMP算法了:
1 public static int KMP(String ts, String ps) {
2
3 char[] t = ts.toCharArray();
4
5 char[] p = ps.toCharArray();
6
7 int i = 0; // 主串的位置
8
9 int j = 0; // 模式串的位置
10
11 int[] next = getNext(ps);
12
13 while (i < t.length && j < p.length) {
14
15 if (j == -1 || t[i] == p[j]) { // 当j为-1时,要移动的是i,当然j也要归0
16
17 i++;
18
19 j++;
20
21 } else {
22
23 // i不需要回溯了
24
25 // i = i - j + 1;
26
27 j = next[j]; // j回到指定位置
28
29 }
30
31 }
32
33 if (j == p.length) {
34
35 return i - j;
36
37 } else {
38
39 return -1;
40
41 }
42
43 }
和暴力破解相比,就改动了4个地方。其中最主要的一点就是,i不需要回溯了。
最后,来看一下上边的算法存在的缺陷。来看第一个例子:
显然,当我们上边的算法得到的next数组应该是[ -1,0,0,1 ]
所以下一步我们应该是把j移动到第1个元素咯:
不难发现,这一步是完全没有意义的。因为后面的B已经不匹配了,那前面的B也一定是不匹配的,同样的情况其实还发生在第2个元素A上。
显然,发生问题的原因在于P[j] == P[next[j]]。
所以我们也只需要添加一个判断条件即可:
public static int[] getNext(String ps) { char[] p = ps.toCharArray(); int[] next = new int[p.length]; next[0] = -1; int j = 0; int k = -1; while (j < p.length - 1) { if (k == -1 || p[j] == p[k]) { if (p[++j] == p[++k]) { // 当两个字符相等时要跳过 next[j] = next[k]; } else { next[j] = k; } } else { k = next[k]; } } return next; }
好了,至此。KMP算法也结束了。
很奇怪,好像不是很难的东西怎么就把我困住这么久呢?
仔细想想还是因为自己太浮躁了,以前总是草草应付,很多细节都没弄清楚,就以为自己懂了。结果就只能是似懂非懂的。要学东西真的需要静下心来。
KMP真是看得比较不清楚,上面的链接讲的不错。 next数组实际上是找当不匹配的时候,我要跳转到当前字符前面的哪个位置保证匹配正确。 next[]一定是-,因为其前面没有字符了,所以此时要改动 被匹配串的 位置。 next[]是0,因为它前面只有1个字符。 s[k]==s[j] next[j+]=next[j]+; s[k]!=s[j] k=next[k] 这个意思表示当前的k不符合要求,我们继续向前找,但是k和next[k]"模式"是等同的,所以从k开始找,而不是从0开始找,~k-1肯定不行 (即上面链接所提到的——ABCABD C和D就是模式等同的,当D不匹配时,说明D前面AB是匹配的,那么不需要从头开始,直接从C开始继续匹配就好了)
KMP算法&next数组总结的更多相关文章
- 数据结构之KMP算法next数组
我们要找到一个短字符串(模式串)在另一个长字符串(原始串)中的起始位置,也就是模式匹配,最关键的是找到next数组.最简单的算法就是用双层循环来解决,但是这种算法效率低,kmp算法是针对模式串自身的特 ...
- 转载-KMP算法前缀数组优雅实现
转自:http://www.cnblogs.com/10jschen/archive/2012/08/21/2648451.html 我们在一个母字符串中查找一个子字符串有很多方法.KMP是一种最常见 ...
- KMP算法 Next数组详解
题面 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百 ...
- 第4章学习小结_串(BF&KMP算法)、数组(三元组)
这一章学习之后,我想对串这个部分写一下我的总结体会. 串也有顺序和链式两种存储结构,但大多采用顺序存储结构比较方便.字符串定义可以用字符数组比如:char c[10];也可以用C++中定义一个字符串s ...
- KMP算法next数组求解
关于KMP算法,许多教材用的是递推式求解,虽然代码简洁,但是有些不好理解,这里我介绍一种迭代求next数组的方法 KMP算法关键部分就是滑动模式串,我们可以每次滑动一个单位,直到出现可能匹配的情况,此 ...
- 【文文殿下】浅谈KMP算法next数组与循环节的关系
KMP算法 KMP算法是一种字符串匹配算法,他可以在O(n+m)的时间内求出一个模式串在另一个模式串下出现的次数. KMP算法是利用next数组进行自匹配,然后来进行匹配的. Next数组 Next数 ...
- poj1961(kmp算法next数组应用)
题目链接:https://vjudge.net/problem/POJ-1961 题意:给定一个长为n的字符串(n<=1e6),对于下标i(2<=i<=n),如果子串s(1...i) ...
- POJ-2752(KMP算法+前缀数组的应用)
Seek the Name, Seek the Fame POJ-2752 本题使用的算法还是KMP 最主要的片段就是前缀数组pi的理解,这里要求解的纸盒pi[n-1]有关,但是还是需要使用一个循环来 ...
- POJ 1961 Period KMP算法next数组的应用
题目: http://poj.org/problem?id=1961 很好的题,但是不容易理解. 因为当kmp失配时,i = next[i],所以错位部分就是i - next[i],当s[0]...s ...
随机推荐
- VB6之ICMP实现ping功能
代码备忘 'code by lichmama from cnblogs.com Private Type IPAddr ip1 As Byte ip2 As Byte ip3 As Byte ip4 ...
- django Modelform
前言: 为什么要用form去验证呢? 我们提交的是form表单,在看前端源码时如果检查到POST URL及我们提交的字段,如果没有验证我们是否可以直接POST数据到URL,后台并没有进行校验,直接处理 ...
- MongoDB数据库基础操作
前面的话 为了保存网站的用户数据和业务数据,通常需要一个数据库.MongoDB和Node.js特别般配,因为Mongodb是基于文档的非关系型数据库,文档是按BSON(JSON的轻量化二进制格式)存储 ...
- TCP常见的定时器三次握手与四次挥手
1.TCP常见的定时器 在TCP协议中有的时候需要定期或者按照某个算法对某个事件进行触发,那么这个时候,TCP协议是使用定时器进行实现的.在TCP中,会有七种定时器: 建立连接定时器(connecti ...
- nyoj_7:街区最短路径问题
做这题时,先假设目标点在某个位置,然后对其稍微移动dx,dy,分析对ans的影响.最终得,选点时,使一半的横坐标比目标点横坐标小,一半的纵坐标比目标点小,这样得到的ans最小. 题目链接: http: ...
- 树上差分 (瞎bb) [树上差分][LCA]
做noip2015的运输计划写了好久好久写不出来 QwQ 于是先来瞎bb一下树上差分 混积分 树上差分有2个常用的功能: (1)记录从点i到i的父亲这条路径走过几次 (2)将每条路径(s,t ...
- servlet前台中文参数处理
@Override protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletExcep ...
- 各种demo:css实现三角形,css大小梯形,svg使用
各种demo: 1.css实现正方形 思路:width为0:height为0:使用boder-width为正方形的边长的一半,不占任何字节:border-style为固体:border-color为正 ...
- ThreadLocal源码分析(转)
阅读总结: ThreadLocal内部使用静态map存储,每个变量对应一个hashcode,不需要指定key值,后台动态生成,good! 每个变量ThreadLocal内部分配Entry,获取值时,通 ...
- 关于bootstrap的一些想法
老实说,作为一个前端人员,我不怎么会去用bootstrap,但是我会去看,会去了解. 首先,bootstrap其实是给后台以及前端新人用来快速完成一个页面的简单布局,不是按照设计稿psd格式给定做的那 ...