题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3081

题意:

n个女生与n个男生配对,每个女生只能配对某些男生,有些女生相互是朋友,每个女生也可以跟她朋友能配对的男生配对。

每次配对,每个女生都要跟不同的男生配对且每个女生都能配到对。问最多能配对几轮。

思路:

这道题乍看之下好像是二分匹配,但仔细一想是不太一样的。考虑用网络流做,首先女生可以与她朋友能配对的男生配对,这样需要用并查集保存他们可以配对的关系,这一点应该不难想到。接下来就是建图了,每个女生与可以配对的男生(包括朋友的可配对的男生)之间建边,容量为 1。 这样需要考虑的就是源点和女生、男生和汇点之间该如何建边了。

本来考虑到n个女生和n个男生不重复完全配对最多只能进行n轮,想到可以将源点和女生、男生和汇点之间的容量赋为n,求出最大流。但是发现这样是不行的,如果有女生或者男生无法配对到,即一轮都无法进行,这样得到的答案就不对了。为了保证每一轮所有女生和男生都能匹配到,我们需要二分源点和女生、男生和汇点之间的容量k,并且需要保证满流。找到最大的满足条件的k就是答案。

解法的正确性可以用数学归纳法证明,简单来说,当k=1时,转化为一个二分匹配,如果满流,就说明可以进行一轮。当k-1轮可以实现时(k-1满流),如果容量为k时满流,说明也可以实现k轮。这样就证明了正确性。

由这个解法我们也可以想到用二分匹配的方法来解决:进行二分图的最大匹配,在匹配完成后判断匹配数是否等于n,不是的话说明GAME OVER 求得答案,是的话说明游戏能完成,然后进行删边操作,再继续匹配,直到匹配数<n为止。

下面给出二分最大流的代码:

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring> using namespace std;
const int MAXN = ;
const int MAXM = ;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to, next, cap, flow;
}edge[MAXM];
int tol;
int head[MAXN];
void init()
{
tol = ;
memset(head, -, sizeof(head));
}
void addedge(int u, int v, int w, int rw=)
{
edge[tol].to = v; edge[tol].cap = w; edge[tol].flow = ;
edge[tol].next = head[u]; head[u] = tol++;
edge[tol].to = u; edge[tol].cap = rw; edge[tol].flow = ;
edge[tol].next = head[v]; head[v] = tol++;
}
int Q[MAXN];
int dep[MAXN], cur[MAXN], sta[MAXN];
bool bfs(int s, int t, int n)
{
int front = , tail = ;
memset(dep, -, sizeof(dep[])*(n+));
dep[s] = ;
Q[tail++] = s;
while(front < tail)
{
int u = Q[front++];
for(int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap > edge[i].flow && dep[v] == -) {
dep[v] = dep[u] + ;
if(v == t) return true;
Q[tail++] = v;
}
}
}
return false;
}
int dinic(int s, int t, int n) {
int maxflow = ;
while(bfs(s, t, n)) {
for(int i = ; i < n; i++) cur[i] = head[i];
int u = s, tail = ;
while(cur[s] != -)
{
if(u == t)
{
int tp = INF;
for(int i = tail-; i >= ; i--)
tp = min(tp, edge[sta[i]].cap-edge[sta[i]].flow);
maxflow+=tp;
for(int i = tail-; i >= ; i--) {
edge[sta[i]].flow+=tp;
edge[sta[i]^].flow-=tp;
if(edge[sta[i]].cap-edge[sta[i]].flow==)
tail = i;
}
u = edge[sta[tail]^].to;
}
else
if(cur[u] != - && edge[cur[u]].cap > edge[cur[u]].flow && dep[u] + == dep[edge[cur[u]].to])
{
sta[tail++] = cur[u];
u = edge[cur[u]].to;
}
else
{
while(u != s && cur[u] == -)
u = edge[sta[--tail]^].to;
cur[u] = edge[cur[u]].next;
}
}
}
return maxflow;
}
int n,m,f;
int fa[MAXN];
int map[][]; int find(int x)
{
return fa[x]==x?x:fa[x]=find(fa[x]);
} void unio(int x,int y)
{
int a=find(x),b=find(y);
if(a!=b)
fa[a]=b;
} void build(int k)
{
init();
for(int i=;i<=n;++i)
{
addedge(,i,k);
addedge(i+n,*n+,k);
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
if(map[i][j])
addedge(i,n+j,);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&f);
for(int i=;i<=n;++i)
fa[i]=i;
memset(map,,sizeof(map));
int a,b;
for(int i=;i<=m;++i)
{
scanf("%d%d",&a,&b);
map[a][b]=;
}
for(int i=;i<=f;++i)
{
scanf("%d%d",&a,&b);
unio(a,b);
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
if(find(i)==find(j))
for(int k=;k<=n;++k)
if(map[i][k])
map[j][k]=;
int s=,t=n,ans;
while(s<=t)
{
int mid=(s+t)/;
build(mid);
if(mid*n==dinic(,*n+,*n+))
{
ans=mid;
s=mid+;
}
else
t=mid-;
}
cout<<ans<<endl;
}
return ;
}

hdu3081 Marriage Match II(二分+并查集+最大流)的更多相关文章

  1. Marriage Match II(二分+并查集+最大流,好题)

    Marriage Match II http://acm.hdu.edu.cn/showproblem.php?pid=3081 Time Limit: 2000/1000 MS (Java/Othe ...

  2. HDU 3081 Marriage Match II (二分+并查集+最大流)

    题意:N个boy和N个girl,每个女孩可以和与自己交友集合中的男生配对子;如果两个女孩是朋友,则她们可以和对方交友集合中的男生配对子;如果女生a和女生b是朋友,b和c是朋友,则a和c也是朋友.每一轮 ...

  3. HDU3081:Marriage Match II (Floyd/并查集+二分图匹配/最大流(+二分))

    Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  4. HDU3081 Marriage Match II —— 传递闭包 + 二分图最大匹配 or 传递闭包 + 二分 + 最大流

    题目链接:https://vjudge.net/problem/HDU-3081 Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    ...

  5. hdu3081 Marriage Match II(最大流)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Marriage Match II Time Limit: 2000/1000 M ...

  6. HDU 3081 Marriage Match II 二分 + 网络流

    Marriage Match II 题意:有n个男生,n个女生,现在有 f 条男生女生是朋友的关系, 现在有 m 条女生女生是朋友的关系, 朋友的朋友是朋友,现在进行 k 轮游戏,每轮游戏都要男生和女 ...

  7. hdu 3081(二分+并查集+最大流||二分图匹配)

    Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  8. hdu3081 Marriage Match II

    新年第一篇,又花了一早上,真是蠢啊! 二分+网络流 之前对于讨论哪些人是朋友的时候复杂度过高 直接n3的暴力虽然看起来复杂度高,其实并不是每次都成立 #include<bits/stdc++.h ...

  9. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

随机推荐

  1. java 笔记 Thread.currentThread().getContextClassLoader() 和 Class.getClassLoader()区别

    查了一些资料也不是太明白两个的区别,但是前者是最安全的用法 打个简单的比方,你一个WEB程序,发布到Tomcat里面运行.首先是执行Tomcat org.apache.catalina.startup ...

  2. Multimodal —— 看图说话(Image Caption)任务的论文笔记(三)引入视觉哨兵的自适应attention机制

    在此前的两篇博客中所介绍的两个论文,分别介绍了encoder-decoder框架以及引入attention之后在Image Caption任务上的应用. 这篇博客所介绍的文章所考虑的是生成captio ...

  3. (转载)Windows 上搭建Apache FtpServer

    因工作需要,最近经常接触到FTP,今天我来介绍一个开源的FTP服务器,那就是Apache FTPServer,Apache FTPServer是一个100%纯Java的FTP服务器. 它的设计是基于现 ...

  4. HDU5734 Acperience(数学推导)

    Problem Description Deep neural networks (DNN) have shown significant improvements in several applic ...

  5. JavaNIO深入学习

    NIO是Jdk中非常重要的一个组成部分,基于它的Netty开源框架可以很方便的开发高性能.高可靠性的网络服务器和客户端程序.本文将就其核心基础类型Channel, Buffer, Selector进行 ...

  6. python3.6----datetime.timedelta

    学习利用python进行数据分析---时间序列分析的时候发现python2.7版本的timedelta模块跟python3.6模块区别python2.7:in:delta= datetime(2017 ...

  7. python基础===随机打印txt文件中的某一行

    def find(): txt = open(r'F:\send1.txt','rb') data = txt.read().decode('utf-8') #python3一定要加上这句不然会编码报 ...

  8. java自旋锁

    一 Test-and-Set Lock 所谓测试设置是最基本的锁,每个线程共用一把锁,进入临界区之前看没有有线程在临界区,如果没有,则进入,并上锁,如果有则等待.java实践中利用了原子的设置stat ...

  9. MySQL Q&A 解析binlog的两个问题

    MySQL Q&A 解析binlog的两个问题 博客分类: MySQL mysqlbinlog字符集解析binlog格式 连续碰到两个同学问类似的问题,必须要记录一下. 问题:     一个作 ...

  10. rtems的GNU(GCC)编译环境配置

    // 创建目录 /home/shael/rtems/build   //存放解压包和编译包目录 /home/shael/rtems/archive   //存放源码包目录 /home/shael/rt ...