最近看了些机器学习的书籍, 想写点笔记记录下. 由于需要使用到很多的数学推导, 所以就看了下如何在 Markdown 中插入数学式,发现在 Markdown 中可以直接插入 LaTeX 数学式.

排版数学公式是 \(\TeX\) 系统设计的初衷, 在 \(\LaTeX\) 中占有特殊地位, 是 \(\LaTeX\) 最为人称道的功能之一, 很多人就是冲着 \(\LaTeX\) 的公式输入功能来的:), 如我... 下面简要介绍下 MarkDown 中如何使用 \(\LaTeX\) 输入数学公式.

数学模式

在 LaTeX 中,最常用到的主要有文本模式和数学模式这两种模式。数学模式又可分为行内公式{inline math)和行间公式 (display math) 两种形式。

行内公式形式是将数学式插入文本行之内,使之与文本融为一体,这种形式适合编写简 短的数学式。

行间公式形式是将数学式插在文本行之间,自成一行或一个段落,与上下文附加一段垂 直空白,使数学式突出醒目。多行公式、公式组和微积分方程等复杂的数学式都是采用行间 公式形式编写。

行内公式 $ ... $

行间公式 $$ ... $$

函数 ${f(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}}+\cdots$

函数 $${f(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}}+\cdots \tag{1.1}$$

函数 \({f(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}}+\cdots\)

函数 $${f(x)=a_nxn+a_{n-1}x{n-1}+a_{n-2}x^{n-2}}+\cdots \tag{1.1}$$

LaTeX 注释符号为 \(\%\)

输入上下标

^ 表示上标, _ 表示下标。如果上下标的内容多于一个字符,要用大括号 { } 把这些内容括起来当成一个整体。上下标是可以嵌套的,也可以同时使用。

\(\sum_i^na_i\)

$\sum_i^na_i$

输入分数

分数的输入形式为 \frac{分子}{分母}

\(P(v)=\frac{1}{1+exp(-v/T)}\)

$P(v)=\frac{1}{1+exp(-v/T)}$

上下划线与花括号

\[\begin{array}
\overline{a+b+c} \\
\underline{a+b+c} \\
\overleftarrow{a+b} \\
\underleftarrow{a+b} \\
\underleftrightarrow{a+b} \\
\vec x = \vec{AB} \\
\overbrace {a+b}^\text{a,b} \\
a+\rlap{\overbrace{\phantom{b+c+d}}^m}b+\underbrace{c+d+e}_n+f
\end{array}
\]

$$
\begin{array}
\overline{a+b+c} \\
\underline{a+b+c} \\
\overleftarrow{a+b} \\
\underleftarrow{a+b} \\
\underleftrightarrow{a+b} \\
\vec x = \vec{AB} \\
\overbrace {a+b}^\text{a,b} \\
a+\rlap{\overbrace{\phantom{b+c+d}}^m}b+\underbrace{c+d+e}_n+f
\end{array}
$$

输入根号

\[\begin{align*}
\sqrt {12} \\
\sqrt[n]{12}
\end{align*}
\]

$$
\begin{align*}
\sqrt {12} \\
\sqrt[n]{12}
\end{align*}
$$

输入括号和分隔符

(), [] , | 分别表示原尺寸的形状,由于大括号 {} 在 LaTeX 中有特定含义, 所以使用需要转义, 即\{\} 分别表示表示{ }。当需要显示大尺寸的上述符号时, 在上述符号前加上 \left\right 命令.

\(\{a\}\)

$f(x,y,z) = 3y^2z 3+(\frac{7x+5}{1+y^2}) \(
\)f(x,y,z) = 3y^2z + \left( 3 +\frac{7x+5}{1+y^2} \right)$

$\{a\}$
$f(x,y,z) = 3y^2z 3+(\frac{7x+5}{1+y^2}) $
$f(x,y,z) = 3y^2z + \left( 3 +\frac{7x+5}{1+y^2} \right)$

关于各种数学符号写法, 详见Cmd Markdown 公式指导手册, 下面主要介绍下常用的 矩阵和多行公式输入 做详细的记录.

矩阵

矩阵中, 不同的列使用 & 分割, 行使用 \\ 分隔

下面展示一系列矩阵环境排版, 区别在于外面的括号不同

\[\begin{align*}
&\text{matrix}\quad\begin{matrix} a&b \\ c&d \end{matrix} \quad &\text{bmatrix}\quad\begin{bmatrix} a&b \\ c&d \end{bmatrix} \quad
&\text{vmatrix}\quad\begin{vmatrix} a&b \\ c&d \end{vmatrix} \quad \\
&\text{pmatrix}\quad\begin{pmatrix} a&b \\ c&d \end{pmatrix} \quad
&\text{Bmatrix}\quad\begin{Bmatrix} a&b \\ c&d \end{Bmatrix} \quad
&\text{Vmatrix}\quad\begin{Vmatrix} a&b \\ c&d \end{Vmatrix} \quad\\
\end{align*}
\]

\[\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix}
\]

\[\chi(\lambda) =
\begin{vmatrix}
\lambda - a & -b & -c \\
-d & \lambda - e & -f \\
-g & -h & \lambda - i
\end{vmatrix}
\]

$$
\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix}
$$ $$
\chi(\lambda) =
\begin{vmatrix}
\lambda - a & -b & -c \\
-d & \lambda - e & -f \\
-g & -h & \lambda - i
\end{vmatrix}
$$

省略号

\[\begin{eqnarray*} \\
\ldots \\
\cdots \\
\vdots \\
\ddots \\
\end{eqnarray*}
\]

$$
\begin{eqnarray*} \\
\ldots \\
\cdots \\
\vdots \\
\ddots \\
\end{eqnarray*}
$$

单行公式与多行公式

equation 环境用来输入单行公式, 自动生成编号, 也可以使用 \tag{...} 自己对公式编号; 使用 equation* 环境, 不会自动生成公式编号, 后续介绍的公式输入环境都是在自动编号后面加上 * 便是不自动编号环境.

\[\begin{equation}
(a+b) \times c = a\times c + b \times c
\end{equation}
\]

\[\begin{equation*}
(a+b) \times c = a\times c + b \times c \\
\end{equation*}
\]

\begin{equation}
(a+b) \times c = a\times c + b \times c \\
\end{equation}

\[ ... \]equation* 环境的简写

\[

(a+b) \times c = a\times c + b \times c \

\]

\\[
(a+b) \times c = a\times c + b \times c \\
\\]

eqnarray 环境用来输入按照等号(或者其他关系符)对齐的方程组, 编号

\[\begin{eqnarray}
f(x) = a_nx^n \\
g(x) = x^2
\end{eqnarray}
\]

$$
\begin{eqnarray}
f(x) = a_nx^n \\
g(x) = x^2
\end{eqnarray}
$$

输入多行公式, gather 环境得到的公式是每行居中的, align环境则允许公式按照等号或者其他关系符对齐, 在关系符前加&表示对齐

\[\begin{gather}
(a+b) \times c = a\times c + b \times c \notag \\
ac= a\times c \\
\end{gather}
\]

\[\begin{align}
y &= \cos t + 1 \\
y &= 2sin t \\
\end{align}
\]

$$
\begin{gather}
(a+b) \times c = a\times c + b \times c \notag \\
ac= a\times c \\
\end{gather}
$$ $$
\begin{align}
y &= \cos t + 1 \\
y &= 2sin t \\
\end{align}
$$

align 环境还允许排列多列对齐公式, 列与列之间使用&分割

\[\begin{align*}
x &= t & x &= \cos t & x &= t \\
y &= 2t & y &= \sin (t+1) & y &= \sin t \\
\end{align*}
\]

\[\begin{align*}
& (a+b)(a^2-ab+b^2) \\
= {}& a^3-a^2b+ab^2+a^2b-ab^2+b^2 \\
= {}& a^3 + b^3
\end{align*}
\]

$$
\begin{align*}
x &= t & x &= \cos t & x &= t \\
y &= 2t & y &= \sin (t+1) & y &= \sin t \\
\end{align*}
$$ $$
\begin{align*}
& (a+b)(a^2-ab+b^2) \\
= {}& a^3-a^2b+ab^2+a^2b-ab^2+b^2 \\
= {}& a^3 + b^3
\end{align*}
$$

align 环境中列分隔符 & 一般放在关系符前面, 如果个别需要再关系符后面或者别的地方对齐的, 则应该注意使用的符号类型

\[% 关系符后对齐,需要使用空的分组
% 代替关系符右侧符号,保证间距
\begin{align*}
& (a+b)(a^2-ab+b^2) \notag \\
={ } & a^3 - a^2b + ab^2 + a^2b
- ab^2 + b^2 \notag \\
={ } & a^3 + b^3 \label{eq:cubesum}
\end{align*}
\]

$$
% 关系符后对齐,需要使用空的分组
% 代替关系符右侧符号,保证间距
\begin{align*}
& (a+b)(a^2-ab+b^2) \notag \\
={ } & a^3 - a^2b + ab^2 + a^2b
- ab^2 + b^2 \notag \\
={ } & a^3 + b^3 \label{eq:cubesum}
\end{align*}
$$

跨多行的单个公式

单个公式很长的时候需要换行,但仅允许生成一个编号时,可以用 split 环境包围公式代码,在需要转行的地方使用 \. split 环境一般用在 equation, gather 环境里面, 可以把单个公式拆成多行, 同时支持 align 那样对齐公式.

split 环境不产生编号, 编号由外面的数学环境产生; 每行需要使用1个&来标识对齐的位置,结束后可使用 \tag{...} 标签编号。 如果 split 环境中某一行不是在二元关系符前面对齐, 需要通过 \quad 等手段设置间距或对齐方式.

\[% 注意 \tag{...} 编号的位置
\begin{equation}
\begin{split}
\cos 2x &= \cos^2 x - \sin^2 x \\
&= 2\cos^2 x - 1
\end{split} \tag{3.1}
\end{equation}
\]

\[\begin{equation}\label{eq:trigonometric}
\begin{split}
\frac12 (\sin(x+y) + \sin(x-y))
&= \frac12(\sin x\cos y + \cos x\sin y) \\
& \quad + \frac12(\sin x\cos y - \cos x\sin y) \\
&= \sin x\cos y
\end{split}
\end{equation}
\]

$$
% 注意 \tag{...} 编号的位置
\begin{equation}
\begin{split}
\cos 2x &= \cos^2 x - \sin^2 x \\
&= 2\cos^2 x - 1
\end{split} \tag{3.1}
\end{equation}
$$ $$
\begin{equation}\label{eq:trigonometric}
\begin{split}
\frac12 (\sin(x+y) + \sin(x-y))
&= \frac12(\sin x\cos y + \cos x\sin y) \\
& \quad + \frac12(\sin x\cos y - \cos x\sin y) \\
&= \sin x\cos y
\end{split}
\end{equation}
$$

将公式组合为块

最常见的是 case 环境, 他在几行公式前面用花括号括起来, 表示几种不同的情况; 每行公式使用 & 分隔, 便是表达式与条件, 例如

\[\begin{equation}
D(x) = \begin{cases}
1, & \text{if } x \in \mathbb{Q}; \\
0, & \text{if } x \in
\mathbb{R}\setminus\mathbb{Q}.
\end{cases}
\end{equation}
\]

$$
\begin{equation}
D(x) = \begin{cases}
1, & \text{if } x \in \mathbb{Q}; \\
0, & \text{if } x \in
\mathbb{R}\setminus\mathbb{Q}.
\end{cases}
\end{equation}
$$

gathered环境 将几行公式居中排列, 组合为一个整体;

\[\left. \begin{gathered}
S \subseteq T \\
S \supseteq T
\end{gathered} \right\}
\implies S = T
\]

$$
\left. \begin{gathered}
S \subseteq T \\
S \supseteq T
\end{gathered} \right\}
\implies S = T
$$

括号的其他用法

功能 语法 显示
圆括号,小括号 \left( \frac{a}{b} \right) \(\left( \frac{a}{b} \right)\)
方括号,中括号 \left[ \frac{a}{b} \right] \(\left[ \frac{a}{b} \right]\)
花括号,大括号 \left\{ \frac{a}{b} \right\} \(\left\{ \frac{a}{b} \right \}\)
尖括号 \left \langle \frac{a}{b} \right \rangle \(\left \langle \frac{a}{b} \right \rangle\)
单竖线,绝对值 \left | \frac{a}{b} \right| 丨\(\frac{a}{b}\)丨
双竖线,范式 \left \| \frac{a}{b} \right \| \(\left \| \frac{a}{b} \right \|\)
取整函数 \left \lfloor \frac{a}{b} \right \rfloor \(\left \lfloor \frac{a}{b} \right \rfloor\)
取顶函数 \left \lceil \frac{c}{d} \right \rceil \(\left \lceil \frac{c}{d} \right \rceil\)
斜线与反斜线 \left / \frac{a}{b} \right \backslash $\left / \frac{a}{b} \right \backslash $
上下箭头 \left \uparrow \frac{a}{b} \right \downarrow \(\left \uparrow \frac{a}{b} \right \downarrow\)
混合括号1 \left [ 0,1 \right ) \(\left [ 0,1 \right )\)
混合括号2 \left \langle \psi \right\| \(\left \langle \psi \right \|\)
单左括号 \left \{ \frac{a}{b} \right . \(\left \{ \frac{a}{b} \right .\)
单右括号 \left . \frac{a}{b} \right \} \(\left . \frac{a}{b} \right \}\)

希腊字母

希腊字母(小写) 输入 希腊字母(大写) 输入
α \alpha Α A
β \beta Β B
γ \gamma Γ \Gamma
δ \delta Δ \Delta
ε或ϵ \epsilon或\varepsilon Ε E
ζ \zeta Ζ Z
η \eta Η H
θ或ϑ \theta或\vartheta Θ \Theta
ι \iota Ι I
κ \kappa Κ K
λ \lambda Λ \Lambda
μ \mu Μ M
ν \nu Ν N
ξ \xi Ξ \Xi
ο o Ο O
π或ϖ \pi或\varpi Π \Pi
ρ或ϱ \rho或\varrho Ρ P
σ或ς \sigma或\varsigma Σ \Sigma
τ \tau Τ T
υ \upsilon Υ \Upsilon
φ或φ \phi或\varphi Φ \Phi
χ \chi Χ X
ψ \psi Ψ \Psi
ω \omega Ω \Omega

三角函数与逻辑数学字符

数学字符 输入 数学字符 输入
± \pm × \times
÷ \div | \mid
\(\nmid\) \nmid \cdot
\circ \ast
\bigodot \bigotimes
\bigoplus \leq
\geq \neq
\approx \equiv
\sum \prod
\coprod \emptyset
\in \notin
\subset \supset
\subseteq \supseteq
\bigcap \bigcup
\bigvee \bigwedge
\biguplus \bigsqcup
log \log lg \lg
ln \ln \bot
\angle 30^∘ 30 ^ \circ
sin \sin cos \cos
tan \tan cot \cot
\prime \int
\iint \iiint
\iiiint \oint
lim \lim \infty
\nabla \because
\therefore \forall
\exists \not=
\not> \not\subset
\hat{y} \check{y}
\breve{y} sec \sec
\uparrow \downarrow
\Uparrow \Downarrow
\rightarrow \leftarrow
\Rightarrow \Leftarrow
\longrightarrow \longleftarrow
\Longrightarrow \Longleftarrow
\(\quad\) \quad # #

参考

Markdown中编写LaTeX数学公式

Markdown下LaTeX公式、编号、对齐

<<LaTeX入门>> 刘海洋

随机推荐

  1. tcp入门(唐唐的故事)

    1,互联网的实现,分成好几层.每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持.把互联网分成五层,容易让人理解. 2,对这五层的理解(唐唐讲故事): 实体层:目的就是把计算机连接起来,用电气 ...

  2. nyoj_253:LK的旅行(旋转卡壳入门)

    题目链接 求平面最大点对. 找凸包 -> 根据凸包运用旋转卡壳算法求最大点对(套用kuang巨模板) 关于旋转卡壳算法 #include<bits/stdc++.h> using n ...

  3. LeetCode-Maximum Subarray[dp]

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  4. Spring源码情操陶冶-AbstractApplicationContext#registerBeanPostProcessors

    承接前文Spring源码情操陶冶-AbstractApplicationContext#invokeBeanFactoryPostProcessors 瞧瞧官方注释 /** * Instantiate ...

  5. 【javascript】继承

    1. js 其实是一个非面向对象的语言,通过对象的深浅复制完成继承 2. 继承方法 继承的方法有两种 1)prototype 原型模式 举个例子 var Animal = function () { ...

  6. java中权限修饰符protected的使用注意事项

    java中四种权限修饰符, 平时编码中最常用的其实public和private, 虽然对protected的概念一直都知道, 但真正使用时才发现有些偏差. protected表示被其修饰的成员可以被本 ...

  7. python 分支语句 循环语句

    分支语句 #if-else if a > b: print('aaa') else: print('bbb') #if-elif-else if a > b: print('a>b' ...

  8. Java Struts图片上传至指定文件夹并显示图片

    继上一次利用Servlet实现图片上传,这次利用基于MVC的Struts框架,封装了Servlet并简化了JSP页面跳转. JSP上传页面 上传一定要为form加上enctype="mult ...

  9. VS 2017开发插件

    codemaid 代码清洁工具 commentsPlus 注释以斜体方式展示,并提供额外的注释格式 viasfora 尖括号颜色设置 reshaper 必备

  10. 敏捷视界:Scrum起源、Scrum术语

    Scrum起源 Scrum的原始含义 Scrum原始含义是指英式橄榄球次要犯规时在犯规地点对阵争球.争球双方各有8个队员参与,各方出3名前锋队员,并肩各站成一横排,面对面躬身互相顶肩,中间形成一条通道 ...