Reinforcement Learning in R
Reinforcement learning has gained considerable traction as it mines real experiences with the help of trial-and-error learning to model decision-making. Thus, this approach attempts to imitate the fundamental method used by humans of learning optimal behavior without the requirement of an explicit model of the environment. In contrast to many other approaches from the domain of machine learning, reinforcement learning works well with learning tasks of arbitrary length and can be used to learn complex strategies for many scenarios, such as robotics and game playing.
Our slide deck is positioned at the intersection of teaching the basic idea of reinforcement learning and providing practical insights into R. While existing packages, such as MDPtoolbox, are well suited to tasks that can be formulated as a Markov decision process, we also provide practical guidance regarding how to set up reinforcement learning in more vague environments. Therefore, each algorithm comes with an easy-to-understand explanation of how to use it in R.
We hope that the slide deck enables practitioners to quickly adopt reinforcement learning for their applications in R. Moreover, the materials might lay the groundwork for courses on human decision-making and machine learning.
Download the slides here
Download the exercise sheet here (solutions are available on request)
Reinforcement Learning in R的更多相关文章
- Awesome Reinforcement Learning
Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...
- Machine Learning Algorithms Study Notes(5)—Reinforcement Learning
Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...
- (zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...
- (转) Deep Learning Research Review Week 2: Reinforcement Learning
Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...
- 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...
- 论文笔记之:Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...
- 论文笔记之:Active Object Localization with Deep Reinforcement Learning
Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...
- 增强学习(Reinforcement Learning and Control)
增强学习(Reinforcement Learning and Control) [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行 ...
- Deep Reinforcement Learning for Dialogue Generation 论文阅读
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...
随机推荐
- ASP.NET自定义模块
要创建自定义模块,类需要实现IHttpModule接口.这个接口定义了Init和Dispose方法. Init方法在启动Web应用程序时调用,其参数的类型是HttpContext,可以添加应用程序处理 ...
- css form表单样式清除
开发项目中表单常用的清楚样式: 1.改变placeholder默认字体颜色 ::-webkit-input-placeholder{color: #333;} :-moz-placeholder{co ...
- DOM Mutation Observer
源链接:http://www.jianshu.com/p/b5c9e4c7b1e1
- 第六章 Hibernate关联映射
第六章 hibernate关联映射一.本章知识点分为2部分:1.关联关系:单向多对一关联关系,双向一对多关联关系(含一对多关联关系),多对多关联关系2.延迟加载:类级别加载策略,一对多加载策略,多对一 ...
- 论.net平台的切身感触(惑)
这篇博客只是作者客观看法,不喜勿喷,条条大路通罗马,路不同风景也不一样,接下来的路该怎么走? 简介:作者.net程序员一枚,工作已有四年,接触过.net平台winform,webform,mvc的开发 ...
- 2017-2-17,c#基础,输入输出,定义变量,变量赋值,int.Parse的基础理解,在本的初学者也能看懂(未完待续)
计算机是死板的固定的,人是活跃的开放的,初学c#第一天给我的感觉就是:用人活跃开放式的思维去与呆萌的计算机沟通,摸清脾气,有利于双方深入合作,这也是今晚的教训,细心,仔细,大胆 c#基础 1.Hell ...
- tablelayoutpanel内部组件变形
tablelayoutpanel设为dock=full后,最大化或最小化窗口会变形. 解决办法:加入flowlayoutpanel,将tablelayoutpanel放入其中,然后在tablelayo ...
- 2017-4-24 WinForm开发基础、窗体的属性CenterScreen
WinForm中文名称: Windows窗体,是·Net开发平台中对Windows Form的一种称谓. 客户端应用程序:C/S 客户端很重要的特点:可以操作用户电脑上的文件 窗体属性:窗体种类: + ...
- PhpMyAdmin导入数据库大小限制?
问题描述: 在phpMyAdmin中导入数据库时,出现问题: 1. 如果按照扩展名.sql导入,提示如下: 没有接收到要导入的数据.可能是文件名没有提交,也可能是文件大小超出 PHP 限制. 2. 如 ...
- 解决oracle用户锁定
故障现象: SQL> connect scott/scottERROR:ORA-01017: invalid username/password; logon deniedSQL> ...