Reinforcement learning has gained considerable traction as it mines real experiences with the help of trial-and-error learning to model decision-making. Thus, this approach attempts to imitate the fundamental method used by humans of learning optimal behavior without the requirement of an explicit model of the environment. In contrast to many other approaches from the domain of machine learning, reinforcement learning works well with learning tasks of arbitrary length and can be used to learn complex strategies for many scenarios, such as robotics and game playing.

Our slide deck is positioned at the intersection of teaching the basic idea of reinforcement learning and providing practical insights into R. While existing packages, such as MDPtoolbox, are well suited to tasks that can be formulated as a Markov decision process, we also provide practical guidance regarding how to set up reinforcement learning in more vague environments. Therefore, each algorithm comes with an easy-to-understand explanation of how to use it in R.

We hope that the slide deck enables practitioners to quickly adopt reinforcement learning for their applications in R. Moreover, the materials might lay the groundwork for courses on human decision-making and machine learning.

Download the slides here

Download the exercise sheet here (solutions are available on request)

Reinforcement Learning in R的更多相关文章

  1. Awesome Reinforcement Learning

    Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...

  2. Machine Learning Algorithms Study Notes(5)—Reinforcement Learning

    Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...

  3. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  4. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  5. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  6. 论文笔记之:Playing Atari with Deep Reinforcement Learning

    Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...

  7. 论文笔记之:Active Object Localization with Deep Reinforcement Learning

    Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...

  8. 增强学习(Reinforcement Learning and Control)

    增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行 ...

  9. Deep Reinforcement Learning for Dialogue Generation 论文阅读

    本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...

随机推荐

  1. C#调用WebService接口实现天气预报在web前端显示

    本文使用web (C#)调用互联网上公开的WebServices接口: (http://www.webxml.com.cn/WebServices/WeatherWebService.asmx)来实现 ...

  2. SQL入门之条件表达式

    where子句和having子句主要是用来筛选符合条件的元组,其后紧跟的即为条件表达式. 0.and, or条件的连接 用法和一般编程语言一样,主要用于条件的拼接.and两边都为真,则结果为真.or两 ...

  3. CSAcademy Beta Round #5 Force Graph

    题目链接:https://csacademy.com/contest/arhiva/#task/force_graph/ 大意是有若干个节点,每个节点对应一个二维坐标,节点之间相互有斥力存在.同时有些 ...

  4. C#中 dynamic 关键字

       所有表达式都能隐式的转换成dynamic,因为所有的表达式最终都能生成从Object派生出的类型. ; int b = a; //隐式转换错误 int b2 = (int)a; ; int b3 ...

  5. Android触摸事件的应用

    前言 上一篇讲了Android触摸事件的传递机制,具体可以看这里 初识Android触摸事件传递机制.既然知道Android中触摸事件的传递分发,那么它能解决什么样的问题,在我们实际开发中如何应用,这 ...

  6. 蓝桥杯-李白打酒-java

    /* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2016, 广州科技贸易职业学院信息工程系学生 * All rights reserved. * 文件名称: ...

  7. Kafka配置及简单命令使用

    一. Kafka中的相关概念的介绍 Kafka是一个scala实现的分布式消息中间件,其中涉及到的相关概念如下: Kafka中传递的内容称为message(消息),message 是通过topic(话 ...

  8. 思考题:用Use Case获取需求的方法是否有什么缺陷,还有什么地方需要改进?(提示:是否对所有的应用领域都适用?使用的方便性?.......)

    思考题: 用Use Case获取需求的方法是否有什么缺陷,还有什么地方需要改进?(提示:是否对所有的应用领域都适用?使用的方便性?.......) 简答: 一.用例解释: 在软件工程中,用例是一种在开 ...

  9. poj 1008

    #include<iostream>#include<string> using namespace std;string hname[19] = { "pop&qu ...

  10. jQuery选择器---层次选择器总结

    今天要分享的是jQuery层次选择器,层次选择器的分类如图: 接下来就开始了 要不先养养眼精神一下: 开始1.祖先选择器: 案例: <form> <label>Name:< ...