Reinforcement learning has gained considerable traction as it mines real experiences with the help of trial-and-error learning to model decision-making. Thus, this approach attempts to imitate the fundamental method used by humans of learning optimal behavior without the requirement of an explicit model of the environment. In contrast to many other approaches from the domain of machine learning, reinforcement learning works well with learning tasks of arbitrary length and can be used to learn complex strategies for many scenarios, such as robotics and game playing.

Our slide deck is positioned at the intersection of teaching the basic idea of reinforcement learning and providing practical insights into R. While existing packages, such as MDPtoolbox, are well suited to tasks that can be formulated as a Markov decision process, we also provide practical guidance regarding how to set up reinforcement learning in more vague environments. Therefore, each algorithm comes with an easy-to-understand explanation of how to use it in R.

We hope that the slide deck enables practitioners to quickly adopt reinforcement learning for their applications in R. Moreover, the materials might lay the groundwork for courses on human decision-making and machine learning.

Download the slides here

Download the exercise sheet here (solutions are available on request)

Reinforcement Learning in R的更多相关文章

  1. Awesome Reinforcement Learning

    Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...

  2. Machine Learning Algorithms Study Notes(5)—Reinforcement Learning

    Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...

  3. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  4. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  5. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  6. 论文笔记之:Playing Atari with Deep Reinforcement Learning

    Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...

  7. 论文笔记之:Active Object Localization with Deep Reinforcement Learning

    Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...

  8. 增强学习(Reinforcement Learning and Control)

    增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行 ...

  9. Deep Reinforcement Learning for Dialogue Generation 论文阅读

    本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...

随机推荐

  1. axure 动态面板制作图片轮播 (01图片轮播)

    利用Axure的动态面板组件制作图片轮播: 首先现在操作区添加一个动态面板组件: 鼠标放在动态面板上,右键单击选择面板状态管理,给动态面板设置名称并添加两条状态然后点击确定. 双击动态面板,然后双击s ...

  2. delphi 7 mdi子窗体。。。无法更改以命令对象为源的记录集对象的 ActiveConnection 属性。

    问题是这样的 我做了一个小程序 把 adoconnection放到了主窗体  连接的是access数据库; 新建了一个子窗体继承自FBase  新建了一个pubulic方法 qrySearch 实现了 ...

  3. Java Script 字符串操作

    JS中常用几种字符串操作: big() small() bold() fontcolor() fontsize() italics() strike() link() charAt() charCod ...

  4. 用react开发一个新闻列表网站(PC和移动端)

    最近在学习react,试着做了一个新闻类的网站,结合ant design框架, 并且可以同时在PC和移动端运行: 主要包含登录和注册组件.头部和脚部组件.新闻块类组件.详情页组件.评论和收藏组件等: ...

  5. window下安装mysqldb模块(虚拟环境)

    因为在虚拟环境下安装mysql-python走了许多弯路,各种环境问题,特此记录 直接使用pip安装mysql-python会报错 pip install MySQL-python 可以直接选择非虚拟 ...

  6. winfrom 实现条形码批量打印以及将条形码信息生成PDF文件

    最近,老大让给客户做个邮包管理程序.其中,包括一些基本信息的增.删.查和改,这些倒不是很难搞定它分分钟的事.其主要难点就在于如何生成条形码.如何批量打印条形码以及将界面条形码信息批量生成以其各自的 b ...

  7. SELECT中的多表连接

    MySQL多表连接查询 连接(join):将一张表中的行按照某个条件(连接条件)和另一张表中的行连接起来形成一个新行的过程. 根据连接查询返回的结果,分3类: 内连接(inner join) 外连接( ...

  8. ArrayList 遍历

    1.迭代器遍历 package sourceCode.ArrayList; import java.util.ArrayList; import java.util.Iterator; import ...

  9. C#是否该支持“try/catch/else”语法

    以前用过一段时间Python,里面有个try/catch/else语法,我觉得挺好用,这个语法形如下: try: print('try...') r = 10 / int('2') print('re ...

  10. 进程间通信系列 之 消息队列函数(msgget、msgctl、msgsnd、msgrcv)及其范例

    进程间通信系列 之 概述与对比   http://blog.csdn.net/younger_china/article/details/15808685  进程间通信系列 之 共享内存及其实例   ...