《深入理解Java虚拟机》学习笔记之内存回收
垃圾收集(Garbage Collection,GC)并不是Java语言的半生产物,事实上GC历史远比Java久远,真正使用内存动态分配和垃圾收集技术的语言是诞生于1960年的Lisp语言。经过半个世纪的发展,内存的动态分配与内存回收技术已经相当成熟。而判断对象是否存活的算法主流有两种引用计数算法和根搜索算法。
引用计数算法
引用计数算法很简单,它实际上是通过在对象头中分配一个空间来保存该对象被引用的次数。如果该对象被其它对象引用,则它的引用计数加一,如果删除对该对象的引用,那么它的引用计数就减一,当该对象的引用计数为0时,那么该对象就会被回收。现代编程语言比如Lisp,Python,Ruby等的垃圾收集算法采用的就是引用计数算法。
根搜索算法
在主流的商用程序语言中(Java和C#,甚至包括古老的Lisp),都是使用根搜索算法(GC Roots Tracing)判定对象是否存活的。这个算法的基本思路就是通过一系列的名为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。如图下图所示,对象object 5、object 6、object 7虽然互相有关联,但是它们到GC Roots是不可达的,所以它们将会被判定为是可回收的对象。
在Java语言里,可作为GC Roots的对象包括下面几种:
- 虚拟机栈(栈帧中的本地变量表)中的引用的对象;
- 方法区中的类静态属性引用的对象;
- 方法区中的常量引用的对象;
- 本地方法栈中JNI(即一般说的Native方法)的引用的对象;
Java引用
无论是通过引用计数算法判断对象的引用数量,还是通过根搜索算法判断对象的引用链是否可达,判定对象是否存活都与“引用”有关。在JDK 1.2之前,Java中的引用的定义很传统:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用。这种定义很纯粹,但是太过狭隘,一个对象在这种定义下只有被引用或者没有被引用两种状态,对于如何描述一些“食之无味,弃之可惜”的对象就显得无能为力。我们希望能描述这样一类对象:当内存空间还足够时,则能保留在内存之中;如果内存在进行垃圾收集后还是非常紧张,则可以抛弃这些对象。很多系统的缓存功能都符合这样的应用场景。
在JDK 1.2之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)四种,这四种引用强度依次逐渐减弱。
- 强引用就是指在程序代码之中普遍存在的,类似“Object obj = new Object()”这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。
- 软引用用来描述一些还有用,但并非必需的对象。对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中并进行第二次回收。如果这次回收还是没有足够的内存,才会抛出内存溢出异常。在JDK 1.2之后,提供了SoftReference类来实现软引用。
- 弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2之后,提供了WeakReference类来实现弱引用。
- 虚引用也称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是希望能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2之后,提供了PhantomReference类来实现虚引用。
Java回收区域
就Java而言,在内存运行时区域的各个部分,其中程序计数器、虚拟机栈、本地方法栈三个区域随线程而生,随线程而灭;栈中的栈帧随着方法的进入和退出而
有条不紊地执行着出栈和入栈操作。每一个栈帧中分配多少内存基本上是在类结构确定下来时就已知的(尽管在运行期会由JIT编译器进行一些优化,但在本章基
于概念模型的讨论中,大体上可以认为是编译期可知的),因此这几个区域的内存分配和回收都具备确定性,在这几个区域内不需要过多考虑回收的问题,因为方法
结束或线程结束时,内存自然就跟随着回收了。而Java堆和方法区则不一样,一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内
存也可能不一样,我们只有在程序处于运行期间时才能知道会创建哪些对象,这部分内存的分配和回收都是动态的,垃圾收集器所关注的是这部分内存。
垃圾收集算法
- 标记-清除(Mark-Sweep)
此算法执行分两阶段。第一阶段从引用根节点开始标记所有被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。此算法需要暂停整个应用,同时,会产生内存碎片。 - 复制(Copying)
此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另外一个区域中。此算法每次只处理正在使用中的对象,因此复制成本比较小,同时复制过去以后还能进行相应的内存整理,不过出现"碎片"问题。当然,此算法的缺点也是很明显的,就是需要两倍内存空间。 - 标记-整理(Mark-Compact)
此算法结合了"标记-清除"和"复制"两个算法的优点。也是分两阶段,第一阶段从根节点开始标记所有被引用对象,第二阶段遍历整个堆,清除未标记对象并且把存活对象"压缩"到堆的其中一块,按顺序排放。此算法避免了"标记-清除"的碎片问题,同时也避免了"复制"算法的空间问题。 - 分代(Generational Collecting)
基于对对象生命周期分析后得出的垃圾回收算法。把对象分为年青代、年老代、持久代,对不同生命周期的对象使用不同的算法(上述方式中的一个)进行回收。现在的垃圾回收器(从J2SE1.2开始)都是使用此算法的。
新生代 GC(Minor GC):指发生在新生代的垃圾收集动作,因为 Java 对象大多都具备朝生夕灭的特性,所以 Minor GC 非常频繁,一般回收速度也比较快。
老
年代 GC(Major GC / Full GC):指发生在老年代的 GC,出现了 Major GC,经常会伴随至少一次的 Minor
GC(但非绝对的,在 ParallelScavenge 收集器的收集策略里就有直接进行 Major GC 的策略选择过程) 。MajorGC
的速度一般会比 Minor GC 慢 10倍以上。
分代收集
所有通过new创建对象的内存都在堆中分配,其大小可以通过-Xmx和-Xms来控制。堆被划分为新生代和老年代,新生代又被进一步划分为Eden和Survivor区,最后Survivor由FromSpace和ToSpace组成,结构图如下所示:
新建的对象优先用新生代的Eden分配内存,Eden空间不足的时候,会进行一次Minor GC,然后会把存活的对象转移到Survivor中,新生代大小可以由-Xmn来控制,也可以用
-XX:SurvivorRatio来控制Eden和Survivor的比例。老年代用于存放新生代中经过多次垃圾回收 (也即Minor GC)
仍然存活的对象 。虚拟机给每个对象定义了一个对象年龄(Age)计数器。如果对象在 Eden 出生并经过第一次 Minor GC
后仍然存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为 1。对象在 Survivor
区中每熬过一次 Minor GC,年龄就增加 1 岁,当它的年龄增加到一定程度(默认为 15 岁)时,就会被晋升到老年代中。
Java垃圾收集器
上面有7中收集器,分为两块,上面为新生代收集器,下面是老年代收集器。如果两个收集器之间存在连线,就说明它们可以搭配使用。
- Serial(串行GC)收集器
Serial收集器是一个新生代收集器,单线程执行,使用复制算法。它在进行垃圾收集时,必须暂停其他所有的工作线程(用户线程)。是Jvm client模式下默认的新生代收集器。对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。 - ParNew(并行GC)收集器
ParNew收集器其实就是serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为与Serial收集器一样。 - Parallel Scavenge(并行回收GC)收集器
Parallel Scavenge收集器也是一个新生代收集器,它也是使用复制算法的收集器,又是并行多线程收集器。parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而parallel Scavenge收集器的目标则是达到一个可控制的吞吐量。吞吐量= 程序运行时间/(程序运行时间 + 垃圾收集时间),虚拟机总共运行了100分钟。其中垃圾收集花掉1分钟,那吞吐量就是99%。 - Serial Old(串行GC)收集器
Serial Old是Serial收集器的老年代版本,它同样使用一个单线程执行收集,使用“标记-整理”算法。主要使用在Client模式下的虚拟机。 - Parallel Old(并行GC)收集器
Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。 - CMS(并发GC)收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。CMS收集器是基于“标记-清除”算法实现的,整个收集过程大致分为4个步骤:
①.初始标记(CMS initial mark)
②.并发标记(CMS concurrenr mark)
③.重新标记(CMS remark)
④.并发清除(CMS concurrent sweep)
其中初始标记、重新标记这两个步骤任然需要停顿其他用户线程。初始标记仅仅只是标记出GC ROOTS能直接关联到的对象,速度很快,并发标记阶段是进行GC ROOTS 根搜索算法阶段,会判定对象是否存活。而重新标记阶段则是为了修正并发标记期间,因用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间会被初始标记阶段稍长,但比并发标记阶段要短。
由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以整体来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。
CMS收集器的优点:并发收集、低停顿,但是CMS还远远达不到完美,器主要有三个显著缺点:
CMS收集器对CPU资源非常敏感。在并发阶段,虽然不会导致用户线程停顿,但是会占用CPU资源而导致引用程序变慢,总吞吐量下降。CMS默认启动的回收线程数是:(CPU数量+3) / 4。
CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure“,失败后而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行,伴随程序的运行自热会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在本次收集中处理它们,只好留待下一次GC时将其清理掉。这一部分垃圾称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,
即需要预留足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分内存空间提供并发收集时的程序运作使用。在默认设置下,CMS收集器在老年代使用了68%的空间时就会被激活,也可以通过参数-XX:CMSInitiatingOccupancyFraction的值来提供触发百分比,以降低内存回收次数提高性能。要是CMS运行期间预留的内存无法满足程序其他线程需要,就会出现“Concurrent Mode Failure”失败,这时候虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。所以说参数-XX:CMSInitiatingOccupancyFraction设置的过高将会很容易导致“Concurrent Mode Failure”失败,性能反而降低。
最后一个缺点,CMS是基于“标记-清除”算法实现的收集器,使用“标记-清除”算法收集后,会产生大量碎片。空间碎片太多时,将会给对象分配带来很多麻烦,比如说大对象,内存空间找不到连续的空间来分配不得不提前触发一次Full GC。为了解决这个问题,CMS收集器提供了一个-XX:UseCMSCompactAtFullCollection开关参数,用于在Full GC之后增加一个碎片整理过程,还可通过-XX:CMSFullGCBeforeCompaction参数设置执行多少次不压缩的Full GC之后,跟着来一次碎片整理过程。 - G1收集器
G1(Garbage First)收集器是JDK1.7提供的一个新收集器,G1收集器基于“标记-整理”算法实现,也就是说不会产生内存碎片。还有一个特点之前的收集器进行收集的范围都是整个新生代或老年代,而G1将整个Java堆(包括新生代,老年代)。
垃圾收集器参数总结
-XX:+<option> 启用选项
-XX:-<option> 不启用选项
-XX:<option>=<number>
-XX:<option>=<string>
参数 | 描述 |
---|---|
-XX:+UseSerialGC |
Jvm运行在Client模式下的默认值,打开此开关后,使用Serial + Serial Old的收集器组合进行内存回收 |
-XX:+UseParNewGC | 打开此开关后,使用ParNew + Serial Old的收集器进行垃圾回收 |
-XX:+UseConcMarkSweepGC | 使用ParNew + CMS + Serial Old的收集器组合进行内存回收,Serial Old作为CMS出现“Concurrent Mode Failure”失败后的后备收集器使用。 |
-XX:+UseParallelGC | Jvm运行在Server模式下的默认值,打开此开关后,使用Parallel Scavenge + Serial Old的收集器组合进行回收 |
-XX:+UseParallelOldGC | 使用Parallel Scavenge + Parallel Old的收集器组合进行回收 |
-XX:SurvivorRatio | 新生代中Eden区域与Survivor区域的容量比值,默认为8,代表Eden:Subrvivor = 8:1 |
-XX:PretenureSizeThreshold | 直接晋升到老年代对象的大小,设置这个参数后,大于这个参数的对象将直接在老年代分配 |
-XX:MaxTenuringThreshold | 晋升到老年代的对象年龄,每次Minor GC之后,年龄就加1,当超过这个参数的值时进入老年代 |
-XX:UseAdaptiveSizePolicy | 动态调整java堆中各个区域的大小以及进入老年代的年龄 |
-XX:+HandlePromotionFailure | 是否允许新生代收集担保,进行一次minor gc后, 另一块Survivor空间不足时,将直接会在老年代中保留 |
-XX:ParallelGCThreads | 设置并行GC进行内存回收的线程数 |
-XX:GCTimeRatio | GC时间占总时间的比列,默认值为99,即允许1%的GC时间,仅在使用Parallel Scavenge 收集器时有效 |
-XX:MaxGCPauseMillis | 设置GC的最大停顿时间,在Parallel Scavenge 收集器下有效 |
-XX:CMSInitiatingOccupancyFraction | 设置CMS收集器在老年代空间被使用多少后出发垃圾收集,默认值为68%,仅在CMS收集器时有效,-XX:CMSInitiatingOccupancyFraction=70 |
-XX:+UseCMSCompactAtFullCollection | 由于CMS收集器会产生碎片,此参数设置在垃圾收集器后是否需要一次内存碎片整理过程,仅在CMS收集器时有效 |
-XX:+CMSFullGCBeforeCompaction | 设置CMS收集器在进行若干次垃圾收集后再进行一次内存碎片整理过程,通常与UseCMSCompactAtFullCollection参数一起使用 |
-XX:+UseFastAccessorMethods | 原始类型优化 |
-XX:+DisableExplicitGC | 是否关闭手动System.gc |
-XX:+CMSParallelRemarkEnabled | 降低标记停顿 |
-XX:LargePageSizeInBytes | 内存页的大小不可设置过大,会影响Perm的大小,-XX:LargePageSizeInBytes=128m |
Client、Server模式默认GC
新生代GC方式 | 老年代和持久代GC方式 | |
---|---|---|
Client |
Serial 串行GC | Serial Old 串行GC |
Server | Parallel Scavenge 并行回收GC | Parallel Old 并行GC |
Sun/oracle JDK GC组合方式
新生代GC方式 | 老年代和持久代GC方式 | |
---|---|---|
-XX:+UseSerialGC |
Serial 串行GC | Serial Old 串行GC |
-XX:+UseParallelGC | Parallel Scavenge 并行回收GC | Serial Old 并行GC |
-XX:+UseConcMarkSweepGC | ParNew 并行GC |
CMS 并发GC 当出现“Concurrent Mode Failure”时 采用Serial Old 串行GC |
-XX:+UseParNewGC | ParNew 并行GC | Serial Old 串行GC |
-XX:+UseParallelOldGC | Parallel Scavenge 并行回收GC | Parallel Old 并行GC |
-XX:+UseConcMarkSweepGC -XX:+UseParNewGC |
Serial 串行GC |
CMS 并发GC 当出现“Concurrent Mode Failure”时 采用Serial Old 串行GC |
PS:
- 在根搜索算法中不可达的对象并非“非死不可”的,这时候他们暂时处在“缓刑阶段”,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行根搜索后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法或finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。如果没有必要执行finalize()虚拟机将会为它自动建立一个低优先级的finalize(),然后进行第二次标记动作,所以finalize()是对象逃脱死亡命运的最后一次机会,只要重新与引用链上的任何一个对象建立关联即可。
- 大对象直接进入老年代:所谓大对象是指需要大量连续内存空间的Java对象,最典型的是那种很长的字符串和数组。虚拟机提供了一个-XX:PretenureSizeThreshold参数,令大于这个设置值的对象直接在老年代分配内存,这样避免在den和Survivor之间发生大量的内存拷贝。尽量避免大对象,尤其是“朝生夕死”的“短命”大对象。
《深入理解Java虚拟机》学习笔记之内存回收的更多相关文章
- Java虚拟机学习笔记——JVM垃圾回收机制
Java虚拟机学习笔记——JVM垃圾回收机制 Java垃圾回收基于虚拟机的自动内存管理机制,我们不需要为每一个对象进行释放内存,不容易发生内存泄漏和内存溢出问题. 但是自动内存管理机制不是万能药,我们 ...
- 深入理解java虚拟机学习笔记(一)JVM内存模型
上周末搬家后,家里的宽带一直没弄好,跟电信客服反映了N遍了终于约了个师傅明天早上来迁移宽带,可以结束一个多星期没网的痛苦日子了.这段时间也是各种忙,都一个星期没更新博客了,再不写之前那种状态和激情都要 ...
- 深入理解Java虚拟机学习笔记(一)-----Java内存区域
一 概述 对于 Java 程序员来说,在虚拟机自动内存管理机制下,不再需要像C/C++程序开发程序员这样为内一个 new 操作去写对应的 delete/free 操作,不容易出现内存泄漏和内存溢出问题 ...
- 深入理解java虚拟机学习笔记(二)垃圾回收策略
上篇文章介绍了JVM内存模型的相关知识,其实还有些内容可以更深入的介绍下,比如运行时常量池的动态插入,直接内存等,后期抽空再完善下上篇博客,今天来介绍下JVM中的一些垃圾回收策略. 一. ...
- 深入理解java虚拟机读书笔记1--java内存区域
Java在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域.这些区域都有各自的用途.创建和销毁的时间,有一些是随虚拟机的启动而创建,随虚拟机的退出而销毁,有些则是与线程一一对应,随 ...
- 深入理解Java虚拟机 - 学习笔记 1
Java内存区域 程序计数器 (Program Counter Register) 是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器.在虚拟机的概念模型里,字节码解释器工作时就是通过 ...
- 深入理解Java虚拟机学习笔记(二)-----垃圾收集器与内存分配策略
写在前面 本节常见面试题: 如何判断对象是否死亡(两种方法). 简单的介绍一下强引用.软引用.弱引用.虚引用(虚引用与软引用和弱引用的区别.使用软引用能带来的好处). 如何判断一个常量是废弃常量 如何 ...
- 深入理解Java虚拟机读书笔记8----Java内存模型与线程
八 Java内存模型与线程 1 Java内存模型 ---主要目标:定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节. ---此处的变量和J ...
- 深入理解Java虚拟机读书笔记1----Java内存区域与HotSpot虚拟机对象
一 Java内存区域与HotSpot虚拟机对象 1 Java技术体系.JDK.JRE? Java技术体系包括: · Java程序设计语言: · 各种硬件平台上的 ...
- 深入理解java虚拟机学习笔记(二)
第三章 垃圾收集器与内存分配策略 概述 程序计数器.虚拟机栈.本地方法栈3个区随线程而生,随线程而灭.因此大体上可认为这几个区域的内存分配和回收都具备确定性.在方法/线程结束时,内存自然就跟着回收 ...
随机推荐
- Angular - - ngReadonly、ngSelected、ngDisabled
ngReadonly 该指令将input,textarea等文本输入设置为只读. HTML规范不允许浏览器保存类似readonly的布尔值属性.如果我们将一个Angular的插入值表达式转换为这样的属 ...
- C++风格写判断某年某月某日是一年的第几天
初学C++,在结构体中写函数及一些C++语言需要的一些格式 看代码 #include<iostream>#include<cstdio>using namespace std; ...
- MySQL 存储表情字符
摘要 在 MySQL 中直接存储表情的时候,会出现无法插入数据的错误. 这是由于一般情况下,MySQL 的字符集是 utf8,而对于 emoji 表情的 mysql 的 utf8 字符集是不支持,需要 ...
- .Net程序员学用Oracle系列(11):系统函数(下)
1.聚合函数 1.1.COUNT 函数 1.2.SUM 函数 1.3.MAX 函数 1.4.MIN 函数 1.5.AVG 函数 2.ROWNUM 函数 2.1.ROWNUM 函数简介 2.2.利用 R ...
- sqlcmd命令导入大容量的SQL本地文件至SQL server 2008
由于开发工作在测试环境,需要构造测试数据,经常遇到100+M大小的*.sql文件需要导入到测试库的情况,由于SSMS里对导入文件的大小有限制: 会出现上图的报错!上网查了下,超过80M的文件是不能在S ...
- 类似qq空间的无限回复怎么实现??
在开发网站的时候遇到这样一个问题,下面是自己的一些思路: 1.把数据库简单的设计出来了 2.这是自己写的简单的例子 3.图表形式 1: 1.发表一篇文章 2: 2给1评论 3: 3给2评论 2 ...
- Sublime Text3常用插件以及安装方法(实用)
Package Control组件在线安装 按Ctrl+`调出console(注:避免热键冲突) 粘贴以下代码到命令行并回车: import urllib.request,os; pf = 'Pack ...
- 【canvas系列】用canvas实现一个colorpicker
每个浏览器都有自己的特点,比如今天要做的colorpicker就是,一千个浏览器,一千个哈姆雷特,一千个colorpicker.今天canvas系列就用canvas做一个colorpicker. ** ...
- Tried to obtain the web lock from a thread other than the main thread or the web thread. This may be
有些操作只能回到主线程操作 比如: mbprogresshud只能在主线程中使用 而且注意凡是关于布局的代码也只能下载主线程
- 无分类编址 CIDR (构成超网)
划分子网在一定程度上缓解了因特网在发展中遇 到的困难.然而在 1992 年因特网仍然面临三个必 须尽早解决的问题,这就是: B 类地址在 1992 年已分配了近一半,眼看就要在 1994 年 3 月全 ...