关于使用lazytag的线段树两种查询方式的比较研究
说到线段树,想来大家并不陌生——最基本的思路就是将其规划成块,然后只要每次修改时维护一下即可。
但是尤其是涉及到区间修改时,lazytag的使用往往能够对于程序的质量起到决定性作用(Ex:一般JSOI2008左右的线段树题目,如果有区间修改的话,那么假如普普通通的一个个修改的话,那么一般30分左右,甚至更少;而有了神奇的lazytag,只要别的地方写的还算基本到位,一般就Accept了)
lazytag的基本思想也就是在需要修改的区间打上标记,然后下次动态维护标记和真正值之间的关系,然后查询或者下一个修改操作涉及此区间时,进行进一步维护。
于是,此时就存在两种不同的查询操作了(此处以BZOJ1798为例)
方案一:当查询过程中,遇到了带有标记的点,则将其记录下来(即并入综合的修改参数里面),然后当刚好找到合适区间是,再操作之
function cal(z,x,y,l,r:longint;d:vet):int64;inline;
var d1:vet;
begin
if l>r then exit();
d1:=merge(b[z],d);
if (x=l) and (y=r) then exit(((a[z]*d1.a0) mod p+(d1.a1*((r-l+) mod p)) mod p) mod p);
exit((cal(z*,x,(x+y) div ,l,min((x+y) div ,r),d1)+cal(z*+,(x+y) div +,y,max((x+y) div +,l),r,d1)) mod p);
end;
这个方案在操作时,实际上并没有动任何的标记,直接通过现有的标记求出了值
方案二:查询过程中遇到标记点的话,则将其扩展下去,保证一路下来都不存在标记点,然后到地方了之后直接返回数值
function cal(z,x,y,l,r:longint):int64;inline;
begin
if l>r then exit();
ext(z,x,y);
if (x=l) and (y=r) then exit(a[z]);
exit((cal(z*,x,(x+y) div ,l,min((x+y) div ,r))+cal(z*+,(x+y) div +,y,max((x+y) div +,l),r)) mod p);
end;
附:ext操作和merge操作
function merge(d1,d2:vet):vet;inline;
var d3:vet;
begin
d3:=d1;
d3.a0:=d3.a0 mod p;d3.a1:=d3.a1 mod p;
d2.a0:=d2.a0 mod p;d2.a1:=d2.a1 mod p;
d3.a0:=(d3.a0*d2.a0) mod p;
d3.a1:=((d3.a1*d2.a0) mod p+d2.a1) mod p;
exit(d3);
end;
procedure ext(z,x,y:longint);inline;
begin
a[z]:=((a[z]*b[z].a0) mod p+(b[z].a1*((y-x+) mod p)) mod p) mod p;
b[z*]:=merge(b[z*],b[z]);
b[z*+]:=merge(b[z*+],b[z]);
b[z].a0:=;b[z].a1:=;
end;
此方法比较直观,比较好想,但是看样子好多标记其实被操作了
好了,现在看下时间对比:(注:此两个程序中除了cal函数不一样其他均一样)
方案一:
方案二:(这个里面方案一的cal函数是通过{}注释掉的,所以代码会多出来那么些)
空间上差不多(phile:这不显然的么呵呵呵),时间上方案一要快,原因其实还是因为方案一并没有涉及到修改标记的操作,而方案二涉及了,而且尤其对于tag很密集的树,操作更是会较为复杂。还有方案二虽然更加直观易想,但是代码其实并没有缩减,两者代码复杂度几乎一样。所以综合而言,方案一更加划算么么哒
下面附上BZOJ1798代码
/**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ type
vet=record
a0,a1:int64;
end;
var
i,j,k,l,m,n,a2,a3,a4:longint;
p:int64;
a,c:array[..] of int64;
b:array[..] of vet;
d,d1:vet;
procedure built(z,x,y:longint);inline;
begin
if x=y then
a[z]:=c[x] mod p
else
begin
built(z*,x,(x+y) div );
built(z*+,(x+y) div +,y);
a[z]:=(a[z*]+a[z*+]) mod p;
end;
b[z].a0:=;b[z].a1:=;
end;
function max(x,y:longint):longint;inline;
begin
if x>y then max:=x else max:=y;
end;
function min(x,y:longint):longint;inline;
begin
if x<y then min:=x else min:=y;
end;
function merge(d1,d2:vet):vet;inline;
var d3:vet;
begin
d3:=d1;
d3.a0:=d3.a0 mod p;d3.a1:=d3.a1 mod p;
d2.a0:=d2.a0 mod p;d2.a1:=d2.a1 mod p;
d3.a0:=(d3.a0*d2.a0) mod p;
d3.a1:=((d3.a1*d2.a0) mod p+d2.a1) mod p;
exit(d3);
end;
procedure ext(z,x,y:longint);inline;
begin
a[z]:=((a[z]*b[z].a0) mod p+(b[z].a1*((y-x+) mod p)) mod p) mod p;
b[z*]:=merge(b[z*],b[z]);
b[z*+]:=merge(b[z*+],b[z]);
b[z].a0:=;b[z].a1:=;
end;
function op(z,x,y,l,r:longint;d:vet):int64;inline;
var
a3,a4:int64;
begin
if l>r then exit();
ext(z,x,y);
if (x=l) and (y=r) then
begin
b[z]:=d;
exit(((a[z]*((b[z].a0-) mod p)) mod p+(b[z].a1*((r-l+) mod p)) mod p) mod p);
end
else
begin
a3:=op(z*,x,(x+y) div ,l,min(r,(x+y) div ),d);
a4:=op(z*+,(x+y) div +,y,max(l,(x+y) div +),r,d);
a[z]:=(a[z]+(a3+a4) mod p) mod p;
exit((a3+a4) mod p);
end;
end;
{function cal(z,x,y,l,r:longint;d:vet):int64;inline; //方案一
var d1:vet;
begin
if l>r then exit(0);
d1:=merge(b[z],d);
if (x=l) and (y=r) then exit(((a[z]*d1.a0) mod p+(d1.a1*((r-l+1) mod p)) mod p) mod p);
exit((cal(z*2,x,(x+y) div 2,l,min((x+y) div 2,r),d1)+cal(z*2+1,(x+y) div 2+1,y,max((x+y) div 2+1,l),r,d1)) mod p);
end; }
function cal(z,x,y,l,r:longint):int64;inline; //方案二
begin
if l>r then exit();
ext(z,x,y);
if (x=l) and (y=r) then exit(a[z]);
exit((cal(z*,x,(x+y) div ,l,min((x+y) div ,r))+cal(z*+,(x+y) div +,y,max((x+y) div +,l),r)) mod p);
end; function modd(x:int64):int64;inline;
begin
if x>= then exit(x mod p);
modd:=((abs(x) div p+)*p+x) mod p;
end; begin
readln(n,p);
for i:= to n do read(c[i]);
readln;
built(,,n);
readln(m);
for i:= to m do
begin
read(j);
case j of
:begin
readln(a2,a3,a4);
d.a0:=a4;d.a1:=;
op(,,n,a2,a3,d);
end;
:begin
readln(a2,a3,a4);
d.a0:=;d.a1:=a4;
op(,,n,a2,a3,d);
end;
:begin
readln(a2,a3);
writeln(modd(cal(,,n,a2,a3)));
end;
end;
end;
end.
关于使用lazytag的线段树两种查询方式的比较研究的更多相关文章
- ZOJ-1610 线段树+两种查询方法(弥补我线段树区间填充的短板)
ZOJ-1610 线段树+两种查询方法(弥补我线段树区间填充的短板) 题意 题意:给一个n,代表n次操作,接下来每次操作表示把[l,r]区间的线段涂成k的颜色其中,l,r,k的范围都是0到8000 这 ...
- codevs 2216 线段树 两种更新方式的冲突
题目描述 Description “神州“载人飞船的发射成功让小可可非常激动,他立志长大后要成为一名宇航员假期一始,他就报名参加了“小小宇航员夏令营”,在这里小可可不仅学到了丰富的宇航知识,还参与解决 ...
- easyui datagride 两种查询方式
easyui datagride 两种查询方式function doReseach() { //$('#tt').datagrid('load', { // FixedCompany: $('.c_s ...
- HashMap两种遍历方式的深入研究
转自:http://swiftlet.net/archives/1259 HashMap的遍历有两种方式,如下所示:第一种利用entrySet的方式: 1 2 3 4 5 6 7 Map map ...
- js的两种查询方式 LHS and RHS
为了进一步理解,我们需要多介绍一点编译器的术语.编译器在编译过程的第二步中生成了代码,引擎执行它时,会通过查找变量 a 来判断它是否已声明过.查找的过程由作用域进行协助,但是引擎执行怎样的查找,会影响 ...
- mysql查询字段类型为json时的两种查询方式。
表结构如下: id varchar(32) info json 数据: id = info = {"age": "18","di ...
- POJ 3225 线段树区间更新(两种更新方式)
http://blog.csdn.net/niuox/article/details/9664487 这道题明显是线段树,根据题意可以知道: (用0和1表示是否包含区间,-1表示该区间内既有包含又有不 ...
- POJ 2299-Ultra-QuickSort-线段树的两种建树方式
此题有两种建树方式! Description In this problem, you have to analyze a particular sorting algorithm. The algo ...
- Codeforces Round #442 (Div. 2) E Danil and a Part-time Job (dfs序加上一个线段树区间修改查询)
题意: 给出一个具有N个点的树,现在给出两种操作: 1.get x,表示询问以x作为根的子树中,1的个数. 2.pow x,表示将以x作为根的子树全部翻转(0变1,1变0). 思路:dfs序加上一个线 ...
随机推荐
- aJax请求结果中包含form的问题
jsp页面a.jsp如下: <form action='login' id='formId' method='post'> <input name='user'> </f ...
- CentOS 6一键系统优化 Shell 脚本
CentOS 6一键系统优化 Shell 脚本 脚本的内容如下: #!/bin/bash#author suzezhi#this script is only for CentOS 6#check t ...
- 进阶之初探nodeJS
一.前言 在"初探nodeJS"随笔中,我们对于node有了一个大致地了解,并在最后也通过一个示例,了解了如何快速地开启一个简单的服务器. 今儿,再次看了该篇随笔,发现该随笔理论知 ...
- 创建 OVS 外部网络 ext_net - 每天5分钟玩转 OpenStack(144)
上一节完成连接外网的配置准备工作,今天就来创建 OVS 外部网络 ext_net. 进入 Admin -> Networks 菜单,点击 "Create Network" 按 ...
- Ubuntu下java环境的搭建
喜欢捣鼓计算机相关的,然后大二的时候就想着用linux,于是当时就装了个ubuntu,还想着把java环境搭建进去,但当时由于"意志不坚定"后来就没用linux了,知道最近突然想在 ...
- iOS核心笔记—源代码管理工具-GIT
源代码管理工具-GIT 一. git 概述 1. git 简介? 什么是git? > git是一款开源的分布式版本控制工具 > 在世界上所有的分布式版本控制工具中,git是最快.最简单.最 ...
- 【.net 深呼吸】项目中是否有必要删去多余的引用
很多大伙伴们常常会苦思一个问题:项目代码中用不到的引用,是不是应该删除,以避免代码在编译后存在太多的无意义引用? 其实,这个问题,你完全可以自己去应证的,咋应证呢?知道反射吗,对了,只要你知道这玩意儿 ...
- C++虚表(V-Table)解析
C++中的虚函数的作用主要是实现了多态,本人通过代码验证的方式了解虚表的结构及在多种继承方式下通过虚表访问子类函数.验证结果如下: 1)无虚函数覆盖的一般继承:可以通过子类的虚表访问父类的函数 2)虚 ...
- FPGA学习体会
我是安徽工程大学电子信息科学与技术专业的学生刘美花,在v3学院的培训结束了,这十几天的培训对我来说还是挺有意义的,不过中间也有一些波折.还记得刚开始的时候和老师还有各个学校的学生不太熟,心中有诸多不满 ...
- Omi教程-生命周期和事件处理
生命周期 名称 含义 时机 constructor 构造函数 new的时候 install 初始化安装,这可以拿到用户传进的data进行处理 实例化 installed 安装完成,HTML已经插入页面 ...