用HMM(隐马)图解三国杀的于吉“质疑”
·背景
最近乘闲暇之余初探了HMM(隐马尔科夫模型),觉得还有点意思,但是网上的教程都超级枯草,可读性很差,抄来抄去的,一堆公式仍在你面前,谁能搞的懂(但园内的两篇写的还算不错。真才实学)。在熬制3天后,把这篇心得反馈给各位码友,为了更加生动的说明模型,特举例三国杀的"于吉"以便加深各位印象。
·于吉
武将技:【蛊惑】——你可以说出任何一种基本牌或非延时类锦囊牌,并正面朝下使用或打出一张手牌。若无人质疑,则该牌按你所述之牌结算。若有人质疑则亮出验明:若为真,质疑者各失去1点体力;若为假,质疑者各摸1张牌。无论真假,弃置被质疑的牌。仅当被质疑的牌为红桃花色且为真时,该牌仍然可以进行结算。最大的意义在于猜测真假,也就是HMM中的隐藏队列。
·HMM 五对象
·观察队列:也就是对手打出的声明牌序,例如【杀、杀、桃、杀、南蛮】。这3张牌个人感觉算是于吉回合内声明频率最高的3张牌。
·隐藏队列:也就是对手打出该张牌时是真?是假?,例如【真、真、假、假、真】,这个是HMM之后要计算的对象之一。
·初始状态Matrix P/Pie:声明第一张牌时,是真是假的概率。
·状态转移Matrix A:从声明第二章牌开始,由真变假,或假变真,或真变真,或假变假的概率。
·混淆矩阵Matrix B:每次声明时的真假心态下,该将什么牌声明成什么牌。
·HMM 两大问题(还有一个学习就不写了)
·评估问题:该轮的声明牌序,其中存在假牌的可能性有多高?
·解码问题:该轮的声明牌序,其中哪几张牌可能为假牌?
·HMM 评估算法过程
·HMM 解码算法过程
·HMM测算结果
Complie Done act:0 Q[0][0]:0.16 Q[0][1]:0.1
act:0 Q[1][0]:0.0332 Q[1][1]:0.047
act:1 Q[2][0]:0.021128 Q[2][1]:0.005476
act:0 Q[3][0]:0.003302 Q[3][1]:0.005047
act:2 Q[4][0]:0.00220564 Q[4][1]:0.00085047 Last Sum Prob=0.00305611 act:0 Q[0][0]:0.16 Q[0][1]:0.1
act:0 com[0]0.096 comp[1]0.07 Q[1][0]:0.0192 com[0]0.064 comp[1]0.03 Q[1][1]:0.032
act:1 com[0]0.01152 comp[1]0.0224 Q[2][0]:0.00896 com[0]0.00768 comp[1]0.0096 Q[2][1]:0.00192
act:0 com[0]0.005376 comp[1]0.001344 Q[3][0]:0.0010752 com[0]0.003584 comp[1]0.000576 Q[3][1]:0.001792
act:2 com[0]0.00064512 comp[1]0.0012544 Q[4][0]:0.00050176 com[0]0.00043008 comp[1]0.0005376 Q[4][1]:0.00016128 Last Max Prob:0.00050176 Path[0][0]=-1 Path[0][1]=-1
Path[1][0]=0 Path[1][1]=0
Path[2][0]=1 Path[2][1]=1
Path[3][0]=0 Path[3][1]=0
Path[4][0]=1 Path[4][1]=1 real 0m0.001s
user 0m0.000s
sys 0m0.000s
Last Sum Prob=0.00305611,个人理解更贴近于本次序列不作弊的可能性。
Path[i][j]来源t-1时刻两种隐藏状态的概率对比,前面<后面 为1,前面>后面 为0。从1和0的区别看,0的出现意味着该张牌声明时作假可能性更高。
·不足之处
- HMM主要依赖于t-1,而在真实世界中,于吉的声明会顾忌整个牌局,也就是t-N之前的状态。
- 大多数HMM关注两个互斥类属性(Yes or No),而在牌局中,于吉的声明真、假后,如果再出现质疑,会出现超越声明真假本身的真假效果(好拗口),这使得对手判断难度增加。
- HMM具有强关联,也就是在数据样本大到一定阶段后,会发现某种观察状态与隐藏属性会无限接近1:1的关系。而在牌局中,即便是基本牌的花色又是一个X因素,尤其是红桃杀的牌数(2张)小于红桃"桃"(7张),而南蛮入侵都是"黑桃"和"草花"。这使得观察序列与隐藏序列受到了一定干扰,或容易被人臆断。
- HMM的干扰因素。干扰因素一,在于HMM 3个矩阵模型的参数设定,这个倒是还能控制一下。如果是像于吉在牌局中的质疑,还会受到对手人数和血量的干扰,如果周泰把把质疑,必然会于吉第N+1张的声明胆量,这些都是HMM所不能控制。
- P/A/B的参数主观因素更高,对结果影响较大
·源码
#include <iostream>
#include <vector>
#include <map>
#include <iomanip>
#include <algorithm> using namespace std; vector<string> v_ob;
vector<string> v_hide_real;
map<string,int> m_ob;
map<string,int> m_p;
double P[2]={0.8,0.2}; //初始状态矩阵
double A[2][2]={{0.6,0.4},{0.7,0.3}}; //状态转移矩阵
double B[2][3]={{0.2,0.4,0.4},{0.5,0.2,0.3}}; //混淆矩阵 void Para_init(); //初始化观察队列
void Forward(); //算前向
void Viterbi(); int main()
{
Para_init();
Forward();
Viterbi(); } //vector 作为函数入参数 void show_vector(vector <int> &vecTest)
void Viterbi()
{
int LEN=v_ob.size();
int M=2;
double Q[LEN][M];
double Path[LEN][M];
for(int i=0;i<LEN;i++)
{
int act=m_ob[v_ob[i]]; //当天活动
cout<<"act:"<<act<<"\t";
for(int j=0;j<M;j++)
{
if(i==0)
{
Q[i][j]=P[j]*B[j][act];
Path[i][j]=-1;
}
else
{
double compare[2];
for(int z=0;z<M;z++)
{
compare[z]=Q[i-1][z]*A[z][j];
}
if(compare[0]<compare[1])
{ Path[i][j]=1;}
else
{ Path[i][j]=0;}
Q[i][j]=max(compare[0],compare[1])*B[j][act];
cout<<"com[0]"<<left<<setw(11)<<compare[0]<<" "<<"comp[1]"<<setw(11)<<compare[1]<<"\t";
}
cout<<"Q["<<i<<"]["<<j<<"]:"<<left<<setw(11)<<Q[i][j]<<"\t";
}
cout<<endl;
}
cout<<endl;
cout<<"Last Max Prob:"<<max(Q[LEN-1][0],Q[LEN-1][0])<<endl;
cout<<endl; for(int i=0;i<LEN;i++)
{
for(int j=0;j<M;j++)
{cout<<"Path["<<i<<"]["<<j<<"]="<<Path[i][j]<<"\t";}
cout<<endl;
} } void Forward()
{
int LEN=v_ob.size();
int M=2;
double Q[LEN][M];
for(int i=0;i<LEN;i++)
{
int act=m_ob[v_ob[i]]; //当天活动
cout<<"act:"<<act<<"\t";
for(int j=0;j<M;j++)
{
//首行判断
if(i==0)
{
Q[i][j]=P[j]*B[j][act];
//cout<<"j="<<j<<"act="<<act<<endl;
}
else
{
double sum=0;
for(int z=0;z<M;z++)
{
// cout<<"tmp="<<Q[i-1][z]*A[z][j]<<" ";
sum+=Q[i-1][z]*A[z][j];
}
Q[i][j]=sum*B[j][act];
}
cout<<"Q["<<i<<"]["<<j<<"]:"<<left<<setw(11)<<Q[i][j]<<"\t";
}
cout<<endl;
} double sum=0;
for(int j=0;j<M;j++)
{
sum+=Q[LEN-1][j];
}
cout<<endl;
cout<<"Last Sum Prob="<<sum<<endl;
cout<<endl;
} void Para_init()
{
//add oberser_list
v_ob.push_back("kill");
v_ob.push_back("kill");
v_ob.push_back("tao");
v_ob.push_back("kill");
v_ob.push_back("man");
// dict
m_ob.insert(make_pair("kill",0));
m_ob.insert(make_pair("tao",1));
m_ob.insert(make_pair("man",2)); m_p.insert(make_pair("true",0));
m_p.insert(make_pair("false",1));
}
本人才疏学浅,各位麻友轻拍砖~~~ ^_^
用HMM(隐马)图解三国杀的于吉“质疑”的更多相关文章
- Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫。 马尔可夫链,的原理attilax总结
Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的 ...
- HMM隐马尔可夫模型(词语粘合)
HMM用于自然语言处理(NLP)中文分词,是用来描述一个含有隐含未知参数的马尔可夫过程,其目的是希望通过求解这些隐含的参数来进行实体识别,说简单些也就是起到词语粘合的作用. HMM隐马尔可夫模型包括: ...
- hmm隐马尔可夫真的那么难吗?
hmm隐马尔可夫真的那么难吗? 首先上代码 这里是github上的关于hmm的:链接 概率计算问题:前向-后向算法 学习问题:Baum-Welch算法(状态未知) 预测问题:Viterbi算法 htt ...
- HMM隐马尔可夫模型来龙去脉(一)
目录 隐马尔可夫模型HMM学习导航 一.认识贝叶斯网络 1.概念原理介绍 2.举例解析 二.马尔可夫模型 1.概念原理介绍 2.举例解析 三.隐马尔可夫模型 1.概念原理介绍 2.举例解析 四.隐马尔 ...
- HMM隐马尔可夫模型来龙去脉(二)
目录 前言 预备知识 一.估计问题 1.问题推导 2.前向算法/后向算法 二.序列问题 1.问题推导 2.维特比算法 三.参数估计问题 1.问题推导 2.期望最大化算法(前向后向算法) 总结 前言 H ...
- 机器学习-HMM隐马尔可夫模型-笔记
HMM定义 1)隐马尔科夫模型 (HMM, Hidden Markov Model) 可用标注问题,在语音识别. NLP .生物信息.模式识别等领域被实践证明是有效的算法. 2)HMM 是关于时序的概 ...
- HMM隐马尔科夫模型
这是一个非常重要的模型,凡是学统计学.机器学习.数据挖掘的人都应该彻底搞懂. python包: hmmlearn 0.2.0 https://github.com/hmmlearn/hmmlearn ...
- HMM隐马尔科夫算法(Hidden Markov Algorithm)初探
1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(p ...
- 自然语言处理(1)-HMM隐马尔科夫模型基础概念(一)
隐马尔科夫模型HMM 序言 文本序列标注是自然语言处理中非常重要的一环,我先接触到的是CRF(条件随机场模型)用于解决相关问题,因此希望能够对CRF有一个全面的理解,但是由于在学习过程中发现一个算法像 ...
随机推荐
- C# winform 实现 qq 在屏幕边缘 自动隐藏 鼠标移过去 移上去 又自动显示
代码下载地址 http://download.csdn.net/detail/simadi/7677147
- 无法使用SQL login去登陆SQL Server - 'Password did not match'
原文:无法使用SQL login去登陆SQL Server - 'Password did not match' 出自:http://blogs.msdn.com/b/apgcdsd/archive/ ...
- ubuntu,从一个新用户,要转到新用户的命令行操作
shibo-ubuntu@ubuntu:~$ sudo useradd karen [sudo] password for shibo-ubuntu: shibo-ubuntu@ubuntu:~$ ...
- 渲染优化 之fixed与返回顶部 以及开启GPU Hack
fixed元素,常见网站右侧出现一个返回顶部的按钮,滚动的时候,会发现返回顶部这个区域在不停的进行重绘,而返回顶部是position:fixed定位的.这也解释了为什么fixed定位是最耗性能的属性之 ...
- 一张图让你看清Java集合类(Java集合类的总结)
如今关于Java集合类的文章非常多,可是我近期看到一个非常有意思图片,基本上把Java集合的整体框架都给展现出来了.非常直观. watermark/2/text/aHR0cDovL2Jsb2cuY3N ...
- Maven直接部署Web应用Tomcat
1. 下载解压版tomcat,并配置环境变量.所以tomcat你可以成功启动. 使用版本解压tomcat可以方便查看tomcat的后台输出的出错信息,便于调试. 2. 给tomcat配置用户名密码. ...
- 两年前实习时的文档——MMC学习总结
1概述 驱动程序实际上是硬件与应用程序之间的中间层.在Linux操作系统中,设备驱动程序对各种不同的设备提供了一致的訪问接口,把设备映射成一个特殊的设备文件,用户程序能够像其它文件一样对设备文件进行操 ...
- Android 异步消息处理机制 让你在深入了解 Looper、Handler、Message之间的关系
转载请注明出处:http://blog.csdn.net/lmj623565791/article/details/38377229 ,本文出自[张鸿洋的博客] 非常多人面试肯定都被问到过,请问And ...
- Model绑定
Model绑定 在前面的几篇文章中我们都是采用在URI中元数据类型进行传参,实际上ASP.NET Web API也提供了对URI进行复杂参数的绑定方式--Model绑定.这里的Model可以简单的理解 ...
- MySQL SQL分析(SQL profile)
分析SQL优化运营开销SQL的重要手段.在MySQL数据库.可配置profiling参数启用SQL分析.此参数可以在全局和session水平集.级别则作用于整个MySQL实例,而session级别紧影 ...