1.1、Keepalived简介

Keepalived是Linux下一个轻量级别的高可用解决方案。高可用(High Avalilability,HA),其实两种不同的含义:广义来讲,是指整个系统的高可用行,狭义的来讲就是之主机的冗余和接管,

它与HeartBeat RoseHA 实现相同类似的功能,都可以实现服务或者网络的高可用,但是又有差别,HeartBeat是一个专业的、功能完善的高可用软件,它提供了HA 软件所需的基本功能,比如:心跳检测、资源接管,检测集群中的服务,在集群节点转移共享IP地址的所有者等等。HeartBeat功能强大,但是部署和使用相对比较麻烦,

与HeartBeat相比,Keepalived主要是通过虚拟路由冗余来实现高可用功能,虽然它没有HeartBeat功能强大,但是Keepalived部署和使用非常的简单,所有配置只需要一个配置文件即可以完成,

1.2、Keepalived是什么?

Keepalived起初是为LVS设计的,专门用来监控集群系统中各个服务节点的状态,它根据TCP/IP参考模型的第三、第四层、第五层交换机制检测每个服务节点的状态,如果某个服务器节点出现异常,或者工作出现故障,Keepalived将检测到,并将出现的故障的服务器节点从集群系统中剔除,这些工作全部是自动完成的,不需要人工干涉,需要人工完成的只是修复出现故障的服务节点。

后来Keepalived又加入了VRRP的功能,VRRP(Vritrual Router Redundancy Protocol,虚拟路由冗余协议)出现的目的是解决静态路由出现的单点故障问题,通过VRRP可以实现网络不间断稳定运行,因此Keepalvied 一方面具有服务器状态检测和故障隔离功能,另外一方面也有HA cluster功能,下面介绍一下VRRP协议实现的过程。

1.3、VRRP协议与工作原理

在现实的网络环境中。主机之间的通信都是通过配置静态路由或者(默认网关)来完成的,而主机之间的路由器一旦发生故障,通信就会失效,因此这种通信模式当中,路由器就成了一个单点瓶颈,为了解决这个问题,就引入了VRRP协议。

熟悉网络的学员对VRRP协议应该不陌生,它是一种主备模式的协议,通过VRRP可以在网络发生故障时透明的进行设备切换而不影响主机之间的数据通信,这其中涉及到两个概念:物理路由器和虚拟路由器。

VRRP可以将两台或者多台物理路由器设备虚拟成一个虚拟路由,这个虚拟路由器通过虚拟IP(一个或者多个)对外提供服务,而在虚拟路由器内部十多个物理路由器协同工作,同一时间只有一台物理路由器对外提供服务,这台物理路由设备被成为:主路由器(Master角色),一般情况下Master是由选举算法产生,它拥有对外服务的虚拟IP,提供各种网络功能,如:ARP请求,ICMP 数据转发等,而且其它的物理路由器不拥有对外的虚拟IP,也不提供对外网络功能,仅仅接收MASTER的VRRP状态通告信息,这些路由器被统称为“BACKUP的角色”,当主路由器失败时,处于BACKUP角色的备份路由器将重新进行选举,产生一个新的主路由器进入MASTER角色,继续提供对外服务,整个切换对用户来说是完全透明的。

每个虚拟路由器都有一个唯一的标识号,称为VRID,一个VRID与一组IP地址构成一个虚拟路由器,在VRRP协议中,所有的报文都是通过IP多播方式发送的,而在一个虚拟路由器中,只有处于Master角色的路由器会一直发送VRRP数据包,处于BACKUP角色的路由器只会接受Master角色发送过来的报文信息,用来监控Master运行状态,一一般不会发生BACKUP抢占的情况,除非它的优先级更高,而当MASTER不可用时,BACKUP也就无法收到Master发过来的信息,于是就认定Master出现故障,接着多台BAKCUP就会进行选举,优先级最高的BACKUP将称为新的MASTER,这种选举角色切换非常之快,因而保证了服务的持续可用性。

1.4、Keepalvied的工作原理

上面我们介绍了Keepalived通过VRRP实现高可用性的工作原理,而Keepalived作为一个高性能集群软件,它还能实现对集群中服务器运行状态的监控以及故障隔离,下面我们介绍一下Keepalived对服务器运行状态和故障隔离的工作原理。

Keepalived工作在TCP/IP 参考模型的 三层、四层、五层,也就是分别为:网络层,

传输层和应用层,根据TCP、IP参数模型隔层所能实现的功能,Keepalived运行机制如下:

在网络层:我们知道运行这4个重要的协议,互联网络IP协议,互联网络可控制报文协议ICMP、地址转换协议ARP、反向地址转换协议RARP在网络层Keepalived在网络层采用最常见的工作方式是通过ICMP协议向服务器集群中的每一个节点发送一个ICMP数据包(有点类似与Ping的功能),如果某个节点没有返回响应数据包,那么认为该节点发生了故障,Keepalived将报告这个节点失效,并从服务器集群中剔除故障节点

在传输层:提供了两个主要的协议:传输控制协议TCP和用户数据协议UDP,传输控制协议TCP可以提供可靠的数据输出服务、IP地址和端口,代表TCP的一个连接端,要获得TCP服务,需要在发送机的一个端口和接收机的一个端口上建立连接,Keepalived在传输层里利用了TCP协议的端口连接和扫描技术来判断集群节点的端口是否正常,比如对于常见的WEB服务器80端口。或者SSH服务22端口,Keepalived一旦在传输层探测到这些端口号没有数据响应和数据返回,就认为这些端口发生异常,然后强制将这些端口所对应的节点从服务器集群中剔除掉。

在应用层:可以运行FTP,TELNET,SMTP,DNS等各种不同类型的高层协议,Keepalived的运行方式也更加全面化和复杂化,用户可以通过自定义Keepalived工作方式,例如:可以通过编写程序或者脚本来运行Keepalived,而Keepalived将根据用户的设定参数检测各种程序或者服务是否允许正常,如果Keepalived的检测结果和用户设定的不一致时,Keepalived将把对应的服务器从服务器集群中剔除

1.5、Keepalived体系结构

  Keepalived体系结构图

Keepalived起初是为LVS设计的,由于Keeplalived可以实现对集群节点的状态检测,而IPVS可以实现负载均衡功能,因此,Keepalived借助于第三方模块IPVS就可以很方便地搭建一套负载均衡系统,在这里有个误区,由于Keepalived可以和IPVS一起很好的工作,很多学员都以为Keepalived就是一个负载均衡软件,这种理解是错误,

在Keepalived当中IPVS模块是可配置的,如果需要负载均衡功能,可以在编译Keepalived时开打负载均衡功能,也可以通过编译参数关闭。

NetLINK模块主要用于实现一些高级路由框架和一些相关参数的网络功能,完成用户空间层Netlink Reflector模块发来的各种网络请求。

这个图我们可以看到用户空间层,是建立在内核空间层之上的,

(1)用户空间层,主要有4个部分:

Scheduler I/O Multiplexer 是一个I/O复用分发调度器,它负载安排Keepalived所有内部的任务请求,

Memory Mngt 是一个内存管理机制,这个框架提供了访问内存的一些通用方法

Control Plane  是keepalived的控制版面,可以实现对配置文件编译和解析

Core componets  这部分主要保护呢了5个部分

Watchdog:是计算机可靠领域中极为简单又非常有效的检测工具,Keepalived正是通过它监控Checkers和VRRP进程的。

Checkers: 这是Keepalived最基础的功能,也是最主要的功能,可以实现对服务器运行状态检测和故障隔离。

VRRP Stack: 这时keepalived后来引用VRRP功能,可以实现HA集群中失败切换功能。

IPVS wrapper: 这个是IPVS功能的一个实现,IPVS warrper模块将可以设置好的IPVS规则发送的内核空间并且提供给IPVS模块,最终实现IPVS模块的负载功能。

Netlink Reflector:用来实现高可用集群Failover时虚拟IP(VIP)的设置和切换 ,

Netlink Reflector的所有请求最后都发送到内核空间层的NETLINK 模块来完成。

更多请参考:http://blog.chinaunix.net/uid-26575352-id-3529109.html

Keepalived详细介绍简介的更多相关文章

  1. java agent 详细介绍 -javaagent参数

    java agent 详细介绍 简介 java agent是java命令的一个参数.参数 javaagent 可以用于指定一个 jar 包,并且对该 java 包有2个要求: 这个 jar 包的MAN ...

  2. WQL语言简介和WQL测试工具wbemtest.exe使用方法详细介绍

    这篇文章主要介绍了WQL语言简介和WQL测试工具wbemtest.exe使用方法详细介绍,WQL是指Windows管理规范查询语言,需要的朋友可以参考下 WQL就是WMI中的查询语言,WQL的全称是W ...

  3. 多图文,详细介绍mysql各个集群方案

    目录 多图文,详细介绍mysql各个集群方案 一,mysql原厂出品 二,mysql第三方优化 三,依托硬件配合 四,其它 多图文,详细介绍mysql各个集群方案 集群的好处 高可用性:故障检测及迁移 ...

  4. Java 集合系列05之 LinkedList详细介绍(源码解析)和使用示例

    概要  前面,我们已经学习了ArrayList,并了解了fail-fast机制.这一章我们接着学习List的实现类——LinkedList.和学习ArrayList一样,接下来呢,我们先对Linked ...

  5. Java 集合系列07之 Stack详细介绍(源码解析)和使用示例

    概要 学完Vector了之后,接下来我们开始学习Stack.Stack很简单,它继承于Vector.学习方式还是和之前一样,先对Stack有个整体认识,然后再学习它的源码:最后再通过实例来学会使用它. ...

  6. Java 集合系列10之 HashMap详细介绍(源码解析)和使用示例

    概要 这一章,我们对HashMap进行学习.我们先对HashMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用HashMap.内容包括:第1部分 HashMap介绍第2部分 HashMa ...

  7. Java 集合系列11之 Hashtable详细介绍(源码解析)和使用示例

    概要 前一章,我们学习了HashMap.这一章,我们对Hashtable进行学习.我们先对Hashtable有个整体认识,然后再学习它的源码,最后再通过实例来学会使用Hashtable.第1部分 Ha ...

  8. Java 集合系列12之 TreeMap详细介绍(源码解析)和使用示例

    概要 这一章,我们对TreeMap进行学习.我们先对TreeMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用TreeMap.内容包括:第1部分 TreeMap介绍第2部分 TreeMa ...

  9. Java 集合系列 09 HashMap详细介绍(源码解析)和使用示例

    java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...

随机推荐

  1. Linux添加用户user到用户组group

    添加用户:useradd niot 添加到组:usermod -a -G root niot 改密码:passwd niot 切换:su - niot 查看用户组:groups 将一个用户添加到用户组 ...

  2. 更改 android realtek的系统权限

    由于在 在删除系统的文件时候出现 Read-only file system,所以要获取权限. 推出shell adb mount mount -o rw,remount /system 就可以了

  3. icon大小

    ldpi mdpi hdpi xhdpi xxhdpi

  4. oracle提高之索引学习

    一. 索引介绍 1.1  索引的创建 语法 : CREATE UNIUQE | BITMAP INDEX <schema>.<index_name> ON <schema ...

  5. 初识Selenium(三)

    浅谈基于Selenium的Web自动化测试框架 发表于:2011-4-25 10:58  作者:邵育亮   来源:51Testing软件测试网原创 字体:大 中 小 | 上一篇 | 下一篇 | 打印 ...

  6. JS的className,字体放大缩小

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  7. JS-DOM元素灵活查找

    用className选择元素 封装成函数 <title>无标题文档</title> <script> /* window.onload=function () { ...

  8. IDL 遍历 XML文档示例

    IDL解析XML文档同样也有2种方法:DOM和SAX方式:两种方法在IDL自带的帮助里面有详细介绍,可以去查看. IDL 源码PRO sample_recurse, oNode, indent COM ...

  9. maven学习笔记 1

    1    概述 1.1 Maven是什么 1.2 为什么要用Maven 2    怎么用Maven 2.1 Maven仓库 2.2 Maven安装 2.3 Eclipse插件 2.4 Maven常用命 ...

  10. CodeForces 678A Johny Likes Numbers

    简单题. #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> ...